The automotive industry is one of the biggest manufacturing industries in the world. In order to meet consumer demand as well as stay ahead of the competition, automakers and other stakeholders in the wider automotive industry are utilizing IoT technologies to facilitate everything from improved efficiency and advanced vehicle management capabilities to offering a superior driving experience. And that’s just for the cars themselves. When it comes to the wider ecosystem, IoT is enabling things like smart manufacturing and add-on services.

IoT has already revolutionized any number of industries, and the automotive sector is no different. IoT is propelling the automotive industry into unprecedented innovation and transformation, with the benefits far-reaching. From enhancing vehicle connectivity and improved safety and security to value added systems and the impact on the larger automotive ecosystem, IoT solutions are unlocking the full potential of connected vehicles, smart manufacturing, and fleet management. To use a well-worn pun, the road ahead is full of exciting developments that promise to shape the future of transportation.

With IoT technology, the way we design, manufacture, operate, and interact with our vehicles has already transformed in significant ways.

What is automotive IoT?

Automotive IoT is the integration of devices and sensors into vehicles, creating a system for connected cars, which in turn enables things like predictive maintenance, fleet management, OEMs, and insurance.

quotes icon

Connected cars simplify life for both drivers and manufacturers, particularly when it comes to software upgrades.

Vehicles are increasingly complex and previously, the only way to update cars was to return them to the dealer, something that was inconvenient for the consumer and costly for the manufacturer. IoT connectivity allows manufacturers to update a car’s many software-reliant components over-the-air, including many of the vehicles electronic control units.

Additionally, evolving technology allows manufacturers to address new liabilities, deploying fixes remotely rather than dealing with issues on a case-by-case basis. When a new vulnerability is identified, IoT connect onboard software allows manufacturers to immediately address that vulnerability quickly and remotely.

And as embedded automotive IoT solutions continue to evolve, more complex innovations will make their debut. The continual advancements in both the speed of mobile communications and the technology inside vehicles will allow automotive manufacturers to offer even more new services as we go forward.

Benefits of automotive IoT

The IoT brings benefits to both the automotive manufacturer and the consumer include:

  • Optimized manufacturing

IoT technology enables a high level of automation and predictive maintenance during the manufacturing process, eliminating or significantly reducing the likelihood of human error. After sale, manufacturers can draw on IoT-generated data to know when servicing is required and alert the customer about this. Manufacturers can also gain a competitive advantage by leveraging IoT data to tailor future vehicle design based on customer needs.

  • Enhanced safety

Connected vehicles can contribute to greater road, driver, and pedestrian safety by utilizing real-time analysis of data from multiple sensors. With IoT, drivers are always aware of the condition of their car and thus can avoid roadside breakdowns or malfunction-related accidents. Additionally, the car’s system can alert drivers to pedestrians, cyclists, or other potential hazards and even initiate emergency braking.

  • Personalization

Connected cars can offer a more customized experience to consumers through personalized in-vehicle infotainment systems, connecting with smart home systems, and even car settings such as music choice, seat position, and optimal temperature.

  • Cost savings

IoT-connected cars save money for both consumers and manufacturers. Predictive maintenance isn’t just for the factory – IoT data can alert drivers to when their vehicle needs service, as well as any unexpected faults or problems. Additionally, connected vehicles increasingly reduce insurance premiums, which we’ll discuss next.

  • Reduced insurance premiums

The evolution of telematics makes it possible for insurance companies to offer more personalized policies. By using real-time driving data, insurance companies can now price their policies more accurately, moving away from a pricing model that largely relied on general demographic information.

quotes icon

By sharing driving data on things like acceleration, braking, turns, and peak activity time consumers can get discounts and rewards based on safe driving habits.

Sharing that data also allows consumers to better understand which factors contribute to their insurance costs.

  • Reduced emissions

Optimizing the car manufacturing process with IoT is one way the automotive industry can help reduce emissions and air pollution. When it comes to the vehicles themselves, connected cars can leverage data to optimize fuel consumption and energy usage levels, as well as reduce traffic congestion by allowing drivers to maintain optimal speed without unnecessary acceleration or stops.

  • Road and traffic management

Leveraging data from IoT-enabled cars to detect congestion, road conditions, or even air quality allows cities to adjust and/or improve thinks like traffic light timings, road surfaces, and pathways, which ultimately leads to better urban infrastructure.

If you would like to learn more about how IoT can enable your automotive solution, please get in touch

5G has launched, while at the same time some of the 2G and 3G networks are being phased out. But while the need for high bandwidth, speed, and reliability is growing, the majority of IoT connections, such as solutions for alarm systems, asset tracking, and smart meters, don’t have requirements for maximum speed and throughput. Instead, they need simplicity and network efficiency. This is where LTE-M comes into play. 

What is LTE-M? 

LTE-M is a low power wide area cellular technology specifically designed for IoT. It prioritizes low power, minimal infrastructure, powerful reach over long distances, and scalability for large or growing deployments, allowing the connection of simple devices that transmit low volumes of data over long periods of time with low power consumption.  LTE-M also supports relatively fast data throughput, mobility, roaming, and voice services.  

Top benefits of LTE-M include: 

  • Long battery life 
  • Better coverage for remote/hard to reach devices
  • Lower power consumption

Why LTE-M? 

From a technical standpoint LTE-M has a number of advantages, and is particularly useful for devices without access to a power supply and thus require a long battery life. With long standby times and at least ten years of battery-powered operation, it is well-suited to remote solutions without easy access to power,  such as underground meters. 

LTE-M also offers significantly better indoor coverage in locations where it is difficult to connect devices using standard GSM technology, which means devices can still upload data in real time. It uses 4G, so when it comes to speed and latency, performance is good, and it also has access to data/voice/SMS communication channels. This is of particular importance when it comes to things like emergency equipment such as elevators and remote assistance devices. Even more importantly, LTE-M will eventually become an integral part of 5G, which guarantees its longevity, so you won’t need to change your device as technology evolves.  

When it comes to costs, LTE-M offers excellent value. Modules are less expensive and with extended stand-alone power, you will see a significant reduction in things like technician call outs, while also limiting the number of devices you need to replace.  

Unlike other technologies LTE-M handles hand-over between cell towers, making it ideal for mobile use cases. For example, if a vehicle crosses different network cells, an LTE-M device behaves just like a mobile phone, never dropping the connection – it doesn’t need to re-establish a new connection. 

Key LTE-M applications:

Smart meters

LTE-M easily enables monitoring utility applications via regular and small data transmissions, while its extended range means better coverage in hard to reach areas

Automotive & transport

Full hand-over between networks makes LTE-M ideal for use cases with medium data rate needs, such as connected cars, asset tracking and fleet management

Smart healthcare

With its extended in-building range, mobility, and voice support, LTE-M is particularly suited for connected health applications, including out-patient monitoring and stay-in-place solutions

Smart cities

LTE-M can facilitate a number of outdoor city needs, such as controlled street lighting, waste management, parking and traffic management, and monitoring of environmental conditions. If we move inside, LTE-M can support building automation, such as controlling access, lighting, and security and alarm systems

If you would like to learn more about what LTE-M can do for your business, please get in touch.

Cities across the globe have already implemented any number of smart city solutions, leveraging IoT technology to connect everything from public transport to healthcare to waste management. But unlocking the full potential of a smart city remains a challenge. To be truly successful and to fully reap the benefits of IoT, smart cities cannot simply adopt digital technologies in silos – they need to leverage and combine the strengths and diverse capabilities of their different departments across the entire smart city ecosystem.

To avoid the myriad challenges silos bring, it’s important that cities create transparency between various city services. Too many teams still operate in solos as they manage various needs such as traffic, utilities, power, water, and parking. Each of these departments generate massive amounts of data – and IoT technology can enable each area to increase productivity, improve processes, and leverage that data to allow for better decision making and cross-departmental collaboration.

quotes icon

Chaotic, siloed planning and development, outdated policies, strategies, and infrastructure – all of these contribute to wasted time, money, resources and energy.

The good news is that many cities are working to remove barriers to a truly connected smart city. The result is a collaborative approach that leverages IoT to mitigate risk and optimize assets, resulting in improved systems and enhanced quality of life.

Here’s what breaking down the silos could mean in practice: imagine a driver on his or her daily commute. They are stuck in traffic and wondering why. Suddenly, they are alerted by the city of an accident 20 km down the road. They are also given information on alternative routes, which allows them to quickly adjust their plans and make it to work on time.

Now let’s add some more to that picture. By leveraging IoT and related technology, the driver isn’t the only person alerted to that accident. First responders and people working with public safety and public works are also notified, oassengers using public transport are alerted and nearby police officers are quickly re-routed and re-assigned.

Suddenly, through IoT, you have all interested parties mobilized and aware and a potentially difficult situation is brought under control much more quickly. Additionally, data from the incident can be utilized to understand if the place of the accident is one where accidents happen regularly. Data can also be used to measure response times and how systems are working.

Another scenario could involve a big event in your city, such as a sporting event or a concert. By connecting your various systems and departments and sharing information, traffic lights and public transport can be coordinated with event timings to help manage and disperse crowds in a safe and efficient manner. Connected parking spaces can help people easily identify where to park through an app, while an integrated cashless payment system can ease processes.

So, how do you develop a truly cohesive smart city that is responsive and integrated? While the best advice is to integrate your solutions right from the start, that might not be possible, given that many cities already have smart city solutions up and running.  No matter what stage your smart city is at, collaboration between the various players across the smart city is pivotal in developing the right suite of smart solutions to meet the unique needs of your city.

quotes icon

Interoperability is a key factor in successfully removing Smart City silos.

Linking legacy systems, including IT systems, with IoT sensors and data architectures is crucial. It’s also important to not see implementing IoT purely in terms of just technology. Implementing IoT is also an operational transformation that will impact a wide range of stakeholders, even if they are not directly involved. And don’t forget about data: know how you’re going extract, analyze, and store data. You may not be using all of the data right away for things like AI, but you may want to in the future, so have a plan.

Ask yourself the following questions:

  • What does ‘smart’ look like/mean for your regions?
  • Which smart solutions will solve which challenges – and how can they work in harmony?
  • Which technologies, policies, and strategies will be needed?
  • How will you finance your projects?
  • How will you address security?
  • How will intelligent systems work together across departments and even with other regions?
  • How will you measure outcomes for different stakeholders?

At the end of the day, employees will come and go, so developing an interconnected, interoperable smart system that is built to last will benefit both the city and any future employees in the long run. Historical data will be crucial to future city planning, as well as key to continued optimization and improved efficiency across the smart city ecosystem.

If you would like to learn more about how Tele2 IoT can help you integrate your Smart City solution, please get in touch.

IoT has opened up a world of possibilities when it comes to healthcare. Ordinary medical devices can now collect extremely valuable and additional data, which in turn gives more insight into symptoms and trends and enables remote care. The result is more autonomy for patients and better monitoring of often serious conditions. Here are just a few of the ways IoT is creating smarter healthcare.

Remote Medical Assistance

One of the biggest and fastest growing areas of healthcare and IoT is remote medical assistance, in which connected devices monitor a patient’s conditions at their homes. Smart devices take readings and observe behavioral patterns (often automatically) and can alert medical professionals when there is a discrepancy. This is particularly applicable for elderly patients, as well as vulnerable patients or patients with long term chronic conditions. It reduces in-person visits and lets patients manage their care from home.

Smart Glucose Monitoring

Around one in ten adults are affected by diabetes, requiring continuous monitoring and treatment.  A Continuous Glucose Monitor helps diabetics monitor their blood glucose levels by taking readings at regular intervals. The data is then sent to a smart phone app and allow for remote monitoring – perfect for parents of diabetic children or relatives or elderly or vulnerable patients. Smart insulin pens automatically record the time, amount, and type of insulin dosage, and store long-term data on a smartphone app.

Connected Inhalers

Asthma kills around 1000 people each day and affects around 339 million people globally – a number that is rising steadily. Smart inhalers offer increased insight into and control over symptoms and treatment, helping those who suffer understand what might be causing their symptoms, tracking use of medication, and also allergen forecasts. One of the biggest benefits is that people using connected inhalers take their medication more consistently and are more likely to use their medication as prescribed, which leads to improvements in their condition.  There is also a wearable asthma monitor that detects symptoms of an asthma attack before its onset.

Connected Pills

According to the World Health Organization, around 50% of medicines are not taken as directed, which can lead to serious health consequences. Ingestible sensors are pills containing microscopic sensors – about the size of a grain of rice – that send a signal to an external sensor worn on the body, ensuring both proper dosage and usage. The data is then relayed to a smartphone app, which helps patients keep on top of their meds. This not only improves adherence to doctor directives, it also allows patients to have a more informed dialogue with their healthcare provider about treatment. Making sure patients take their medication at the right time is also an issue, particularly among elderly patients, who tend to be prescribed a cocktail of medications that are to be taken at certain times of the day.  Connected pill dispensing machines ensure that not only does the patient take the pill at the right time in the right dosage through the use of prompts, it also alerts healthcare providers if something is wrong.

Hand Hygiene Compliance

Proper hand hygiene is the single biggest defense against spreading disease, yet research shows that one out of every 20 patients in the US get infections from lack of proper hand hygiene in hospitals, with some losing their lives as a result.  Connected hand-hygiene stations monitor hand hygiene compliance in real time: any time a healthcare professional comes near a patient without washing their hands a sensor beeps, reminding them of their duty to treat their patients with clean hands.

Hospital Operations

Optimizing a hospital or healthcare center can take many forms; cutting unnecessary costs and streamlining daily functions are just two ways IoT has real value in a medical facility. Millions of dollars are lost annually due to lost or stolen equipment, which has a real knock on effect when it comes to patient treatment and resources. Attaching sensors to equipment allows hospital staff to track any piece of equipment in real time, which not only reduces theft but also allows tracking of the overall use of equipment. And by tracking usage, administrators can more easily understand when to replace or perform maintenance, thus avoiding equipment downtime.

Research

Much of today’s medical research lacks critical real-world information, instead using controlled environments and volunteers.  IoT opens up a sea of valuable data and information through analysis, real-time field data, and testing, delivering far superior, more practical, reliable data. This, in turn, yields better solutions and discovery of previously unknown issues.

Healthcare is one of the fastest growing IoT areas. If you’re interested in creating smarter healthcare, get in touch.

Learn more about connected healthcare

According to the International Water Association, more than 400 billion liters of potable water are lost through leakage each year, largely due to ageing and crumbling infrastructure. Furthermore, while a one-day water mains break will lose roughly 75 thousand liters of water, an unreported service connection break can lose more than 4.5 million liters of water during the six months that, on average, it takes to be discovered. From reservoirs to water mains to indoor plumbing, leaks can spring up anywhere along water’s piped journey, costing time, money, and resources, and it’s never been more critical to conserve water. The UN estimates 2.3 billion people already live in water-stressed countries and globally, water use is growing at more than twice the rate of population increase.  

This is not great news for municipalities and other concerned parties, who are dealing with the double whammy of increasing urban populations and the resulting water stress. So, what can be done to address the challenges around this increasingly scarce resource? This is where IoT can make all the difference.

There are any number of benefits in using IoT to better manage water systems. Here are just six of the top takeaways:

  • Better transparency
  • Fewer incidents
  • Enhanced control
  • Data-based decision making
  • Cost control
  • Improved sustainability

Utility companies are of course already widely using IoT for digital metering solutions, but IoT water leak detection technology can play an invaluable role for facility owners and operators in developing a comprehensive plan for mitigating leakage. Advancements in IoT technologies such as LPWA (low-power, wide area) allow for the efficient management and maintenance of ageing water supply infrastructure through remote monitoring.

quotes icon

Through the use of IoT, water utilities can plan for and mitigate possible challenges or even prevent them from happening, predicting behaviors in advance or even as they occur, in real time, including pinpointing location.

Advanced IoT sensors allow detailed, accurate, and real-time analysis of water systems, including potable water, wastewater, and waterways. Additionally, IoT technology enables utility companies to monitor various parameters remotely, including:

  • Water quality & pressure
  • Temperature
  • Turbidity & suspended solids
  • Water levels

The reduced visibility of water mains and pipes means monitoring can be challenging. The introduction of small IoT sensors and devices makes leak detection simpler and faster. These sensors and devices, often using LPWA technology, can be used to measure vibrations, pressure, flow rates, and in some cases even sound waves. They monitor water flow patterns and immediately detect when this flow deviates from normal patterns bases on data from the sensors. Early detection of leaks and even the level of damage can be very beneficial in terms of sustainability, time savings, cost estimates, understand the scope of repairs, and thus better use of manpower.

IoT sensors and the data produced can also contribute to decision making by predicting potential leakage. Predictive maintenance allows you to take precautionary measures, as well as direct your resources more precisely, addressing challenges when they are still manageable. In other words, instead of having to deal with a major water main break, which can interrupt service and potentially create gridlock on the roads, you can find and fix a smaller leak with minimal disruption. By deploying IoT technology for predictive purposes, you reduce schedules or time-based checks. Instead, data will tell you where you have a challenge, allowing you to make informed decisions so you can protect your assets by addressing challenges quickly and efficiently and minimizing potential further damage.

Taking a closer look at the cost cutting benefits, while IoT sensors can save time, alleviate stress, and save money by preventing or minimizing challenges, they can also help when estimating damage. Sensors can often detect how much damage has been caused by a water leak and can potentially stop a leak as soon as it starts by sending an alert, which triggers a shutoff valve to close the main supply line. This quick response saves you money in myriad ways and the data will help you understand the scope of the problem and what it’s going to take to fix it.

Ultimately, water is a finite resource and of all the water on earth, only 3% is fresh water. With growing populations combined with water stress, it is critical that the growing gap between supply and demand is addressed. Streamlined water processes and minimizing wastage are key elements to ensuring this. Real time monitoring alerts and maintenance alerts can be key factors in doing this when addressing water leakage. Additionally, an integrated approach can include monitoring reservoir levels and monitoring ground water levels, creating a framework for smart cities, while promoting improved coordination and management of water resources and processes.

If you would like to learn more about how IoT can help you better manage your business and operations, please get in touch.

Learn more about smart solutions

Anyone who spends time in cities won’t have missed the rise in popularity of micromobility (aka urban mobility). Small, lightweight vehicles such as e-scooters and e-bikes provide affordable, accessible, and eco-friendly transportation that is also cost-effective, and are seen as the answer to gridlocked cities and urban air pollution. Ernst & Young has called e-scooters the ‘fastest growing mode of transport ever documented’.  In fact, the micromobility market is expected to enjoy CAGR of 16 percent from $3 billion in 2019 to $12 billion by 2027. This growth is due to both changes in consumer sentiment, where micromobility solutions are increasingly seen as viable commuter options, and the industry itself willingly tackling some of its more pressing issues, such as parking. Micromobility is also getting a boost from city planners, who are prioritizing greater sustainability and efficiency and the reduction of car use within city boundaries.

So, where does IoT fit into the micromobility picture? From a tech perspective, cellular connectivity is one of the keys to the success of micromobility because it is critical to managing the growing fleets. Additionally, IoT allows micromobility to address major criticisms, such as e-scooters being dumped on sidewalks willy-nilly. Connecting things like e-scooters helps the industry ensure they know where their assets are and that they are in working order.

There are roughly six different IoT sensors that can enable and enhance a micromobility solution:

  • A condition sensor diagnoses battery levels and maintenance needs
  • A sound sensor cautions too-close pedestrians
  • An NFC (near-field communication) sensor is used for payments and unlocking
  • A motion sensor detects vandalism or impact
  • A GNSS (Global Navigation Satellite System) sensor maps the location of the fleet
  • Air quality and noise sensors gather environmental data for third parties, such as city planners

Cellular connectivity allows micromobility companies to optimize their offering. Location-aware connected units allow them to mitigate risks, such as setting up safety zone to enforce low speeds and recovering abandoned scooters.  Additionally, micromobility companies can contribute to smart city planning and transit improvement through gathering valuable data which shows traffic patterns and commuter trends around a city.

Despite micromobility having a positive impact on things like city gridlock, there are also some safety concerns. Accidents are not unheard of, and the majority of accidents are suffered by people who had no previous experience with e-scooters. The industry has responded by introducing information and safety training videos, but more importantly, they are working with municipalities to implement geo-fencing parameters that enforce good habits, such as not allowing e-scooters to operate outside of bike lanes.

Additionally, the misuse of micromobility has been something of a nuisance for cities, where it has been common to find an e-scooter dumped in the middle of a sidewalk or other inconvenient spots, creating a hazard for pedestrians. Cellular connectivity gives fleet managers a bird’s eye view of every device, allowing them to proactively monitor and track the fleet and address challenges quickly.

And finally, IoT cellular connectivity enables expansion of environmentally friendly urban transportation by providing reliability, transparency, and flexibility. Fleets are easier to place wherever needed, and maintaining the subscription-as-a-service model benefits consumers by giving them an affordable transport option that also reduces their individual environmental impact.

If you would like to learn more about how IoT can enable your business, please get in touch.

Learn more about how IoT enables mobility

IoT and digitalization continue to impact nearly every industry and retail is no different. While retailers have been working with RFID for quite a long time, new and improved IoT technologies are giving retailers the opportunity to improve operations and enhance customer experience, whether that’s in your brick-and-mortar operation or your e-commerce side of things. From reducing inventory error and optimizing supply chains to decreasing labor costs and reducing theft, IoT can benefit both customer and business owner in myriad ways. 

Here are seven ways IoT is enabling and enhancing retail:

In-store data collection

Smart sensors allow retailers to track foot traffic and shopping behavior, which offers a number of benefits. First, understanding traffic flows allows businesses to evolve store layouts and stock placement to data-driven merchandising, as well as pairing products and placing them where they can easily be found by the customer.  Brands also have the opportunity to identify traffic hotspots, allowing them to strategically place promotional material or advertising in spaces where shoppers frequent, creating more awareness with less effort.

Automated checkout

Let’s face it: no one likes to stand in long lines waiting to pay. Long lines not only lead to lost customers in the moment, they can also deter customers from returning to your store. That said, adding more staff to handle the problem isn’t always the optimal solution. While self-checkout has helped ease the problem to an extent, IoT-enabled checkout systems are the real game-changer. An automated checkout system reads tags on each item a customer has put in their basket as they leave the store. So, instead of checking out at the counter with an employee or going through a self-checkout line, the automated checkout system takes note of the items and deducts the cost from the customer’s mobile payment app. The result is quicker purchases, happier customers, and reduced costs for the retailer.

Smart shelves

Inventory management is a time-consuming task, but a vital one in order to make sure that items are not out of stock, misplaced, or stolen. Smart shelves help you track inventory and get an alert whenever stock levels are funning low or when an item is misplaced/placed on a shelf incorrectly. IoT sensors allow you to gather information and data on each product, which not only helps you monitor stock levels, but also detect in-store theft.

Personalized discounts

Loyalty programs and discounts are an ideal way to show appreciation for returning customers while also ensuring their loyalty. IoT sensors placed around a store can distribute loyal discounts to loyalty program members via their smartphones when they stand near discounted products. Additionally, IoT can track items that a customer has been looking at online, sending them a personalized discount when they visit the store. So, instead of offering general discounts on numerous random products, each discount can be tailored to individual customers, maximizing conversion rates.

Optimized store layout

Planning store layout can be tricky, but through the use of IoT data and analytics, a store’s layout can be optimized not just for the retailer, but for the customers too. This not only enhances customer experience, it also increases profitability. Deploying sensors across aisles can help retailers place products in relation to customer behavior, including placing the least in demand products front and center and the most popular ones further to the back. The data gathered also provides insights into customer behavior and shopping preferences.

Food safety monitoring

Food and beverage retailers know that efficient operations are crucial when it comes to offering their customers products that are fit for consumption. Establishing and maintaining an efficient operation, though, can be challenging and one impacted by any number of factors. Anything from an electrical outage to staff error can lead to stock contamination, spoilage, and loss – costing you money. IoT sensors can prevent loss and mitigate human error by monitoring perishable goods in real team. They can automatically log temperatures in prep areas, fridges, freezers, and other equipment, setting thresholds for each sensor and receiving an alert any time a threshold is breached. This helps protect inventory by ensuring food storage areas remain temperature compliant.

Supply chain optimization

Managing customer expectations is crucial in retail and IoT allows retailers to do this through up-to-date insights into inventory availability. Starting in the warehouse, IoT-enabled sensors on product shelves can monitor weight fluctuations that signal when products are running low. This ability to recognize the popularity of particular goods – such as the ones that are flying off the shelves – allows retailers to proactively restock in good time. This is increasingly important as more and more customers move to online shopping – physical inventory isn’t visible, so the ability to know when to restock before someone purchases an item that isn’t available lowers the risk of transactional error. Additionally, warehouses are big and finding a particular product can be like finding a needle in a haystack – deploying sensors in your warehouse leads to greater overall visibility and streamlined processes.

Learn more about how IoT can enable your business

In a world where we are continually faced with floods of information coming at us from all directions, it’s more important than ever to deliver messages that break through the noise and capture the attention of your audience. Gone are the days of the passive and static billboard on the highway or in a shopping mall – today, there is a fast-growing demand for digital displays that deliver high quality, high-resolution content everywhere from public spaces to restaurants to shops. The demand to be flexible in order to quickly pivot both your message and where that message is seen and heard mean cellular IoT connectivity is the right choice when it comes to connecting your digital signs

Not all that long ago a digital sign was simply a digital replacement for a static sign. The signs weren’t ‘smart’ and they didn’t really do much more than passively display information. These days, digital displays are both interactive and dynamic, and they are connected to other resources or devices to provide near instant access to relevant and often personalized information. This leads to streamlined communication, differentiation from competitors, and often an improved bottom line.

But as digital signage evolves, new needs are emerging, calling for even more agile and dynamic solutions. This is where IoT brings real value. Businesses need simple, integrated solutions that offer the flexibility and freedom to customize their content and narrative without the need to constantly update their systems or lay out a lot of money.

So, when it comes to connecting your digital signs, it’s simple:  SIM-based cellular connectivity does away with the need for time consuming and complex on-site setups that you get with hardwired networks. By empowering digital displays with SIM cards, digital signs can be installed anywhere in the world where cellular networks exist – which means pretty much anywhere. You simply deploy your device, activate your SIM, and off you go, bringing your message to the audience you want, where you want.

Digital signage benefits

There are any number of benefits to connecting your digital signage, but these are the most critical due to broad applicability and relevance across most industries:

Enhanced engagement

Digital displays capture nearly 400% more views than traditional static displays. How does this impact your business? More views mean more opportunities, and more interest means more customers at your door, all of which can lead to more sales. Essentially, moving images attract eyes a lot faster than a static image.

Speed

We all know that time is money and the difference between traditional signs and digital signs is like night and day. Unlike with the old signs, digital displays don’t need to be printed, posted, and lived with for days or weeks on end, only to go through the process all over again when you have some new content. With digital signage, you can change your content in the blink of an eye, tailoring your message where and and when needed.

Greater customer satisfaction

From helping customers find their way to improving information accessibility, digital signage enhances customer experience in myriad ways. In fact, according to Digital Signage Today, customers who interact with digital signage have 46% high satisfaction, with managing queues by displaying estimated wait times and alerts when it’s a customer’s turn reducing perceived wait times at checkout by as much as 35%. All of this leads to increased customer retention.

Increased revenue

When it comes to retail, you can take advantage of your digital real estate in high-traffic areas by selling advertising space to well-chose third-party companies. These could be brands you offer in-store or businesses with complementary products and services. Of course, over-using this tactic can have the opposite effect: a few, well placed ads can be a bonus – a deluge could degrade the experience.

If you would like to learn more about how IoT can enable your digital signage, please get in touch. You can also learn more about how digital signage works in practice here.

Learn more about how cellular connectivity and IoT can enable your business

IoT is one of the driving technologies behind the smart city concept and is poised to be a key component in facilitating sustainable urban development. More than half of the world population lives in urban areas today and cities account for more than 70 percent of global carbon emissions and 60-80% of energy consumption. As urban populations have increased, services have overall deteriorated in terms of both quantity and quality, with rapid urbanization giving rise to increased challenges around things like traffic congestion, water contamination, and most importantly, social inequality.

Municipalities are leveraging IoT technology to connect devices, infrastructure, and people. It is being used to address challenges that range from waste management and water conservation to traffic, air pollution, and power grids. By leveraging IoT technologies, cities are able to successfully manage their growing populations by improving quality of life and the efficiency of urban operations and services, while also increasing competitiveness and addressing economic, social, environmental, and cultural needs.

Let’s take a closer look at a few areas where cities are leveraging IoT technology to address challenges, and how things could play out as solutions evolve:

Transportation & traffic

Among the key goals of any public transport system are greater efficiency and reliability – and smart technology is the key to enablement. There are a number of areas where IoT is particularly helpful:

• Toll & ticketing

More people in our cities means more vehicles on our roads – and an increase of vehicles means queues at toll booths. While automated tolls, using an RFID (Radio Frequency Identification) tag, have already improved the flow of traffic, further improvements are possible through the use of IoT technology. Many of today’s vehicles come equipped with IoT connectivity, which allows a car or truck to be detected up to a kilometer away from a tolling station. What this means in practice is that the car or truck can be identified long before it approaches a toll booth – so when the vehicle finally gets there the barrier automatically raised for the vehicle to pass through. For older vehicles, a registered smart phone could serve the same purpose, taking automatic payment from the phone’s digital wallet.

• Connected vehicles

As mentioned, many vehicles today are already connected and are equipped with sensors and devices that monitor everything from brakes and the engine to tire pressure and exhaust. Going forward, connected vehicles will use in-vehicle networks, radar, and cameras to help detect and communicate with one another, prevent collisions, and promote smooth traffic flow. Vehicle tracking systems are already being used within the freight and rental segments, monitoring driver behavior and collecting data on things like idling time and fuel consumption.

• Public transport management

IoT technologies are already widely used in public transport, including for integrated ticketing and automated fare collection, passenger information, and display systems. IoT can also be used for real-time vehicle tracking, which allows public transport agencies to communicate better with customers about things like arrival and departure times. Datal analysis and real-time management allows transit agencies to monitor progress in real-time and make adjustments for unpredicted incidents, such as accidents, roadworks, station closures, etc.

Smart lighting

The majority of city dwellers spend more time indoors than outdoors, which can have a significant impact on energy consumption. The use of electricity for lighting can be significantly optimized with the use of intelligent systems. Natural light cycles can be mimicked by incorporating light and temperature sensors, while light sensor-based applications can be used to manage the orientation of solar panels for optimal usage of natural resources.

If we look at street lighting, the savings and benefits are clear:

• Dynamic dimming

Intelligent streetlights adjust light levels based on specific times and events. When paired with motion sensors, light levels can be further refined. Dynamic dimming based on time, event, or human presence can result in a more than 60% reduction in energy consumption, while the use of motion sensors means when no human presence is detected, streetlights illuminate at a low, predefined level, reducing energy usage, CO2 emissions, and light pollution.

• Maintenance optimization

Intelligent streetlights mean near real-time information on each light, allowing almost instant notification of faults or errors, which allows city managers to take informed actions, while at the same time reducing the need for manual checks. This can reduce maintenance costs significantly.

• Increased public safety

Smart motion sensors trigger streetlights only when humans are detected, for example when a pedestrian or cyclist passes by, encircling them in a ‘circle of light’.  This increases overall public safety, as statistically speaking criminals avoid committing crimes in well-lit areas.

Additionally, smart streetlights offer an ideal point from which a diverse range of smart city applications can be launched, collecting a wide array of data on everything from air quality to street security to traffic patterns. Streetlight poles have an uninterrupted power supply, making it easy to power IoT devices and sensors. They are also generally spread uniformly across cities and are consistent in height, making them idea for hosting all kinds of IoT sensors and systems, removing the need to set up ad hoc infrastructures.

Healthcare

Combine a global pandemic with ongoing populations growth, inefficient patient flow, swindling staff, and a host of other challenges in healthcare and it’s clear that healthcare can use all the help it can get. Through the use of IoT, authorities can collect data to gain valuable insights, which in turn can be used for better public healthcare planning.

For patients, devices such as smart insulin pens, connected inhalers, asthma monitors, blood pressure monitors, etc. allow them to better manage and address their own health needs, as well as provide more accurate data to their healthcare providers – and also quickly access help if there is trouble. Additionally, data collection allows observation and treatment to take place, something that was previously only possible in an institutional setting. Smart devices and other connected sensors can also help with early detection.

Here are several of the ways IoT can enable better healthcare:

• Remote monitoring

Customized software and devices gathers data from remote devices in real time, allowing for a better analysis of patient’s health – and thus improved outcomes.

• Enhanced supervision & reporting

Remote supervision through connected devices can collect essential health data and transfer it to a health professionals in real time, allowing a quick response to medical emergencies such as heart failure or asthma attacks.

• Reduced costs

Connected devices and other IoT devices such as tele care allow patients to connect with their health professionals from how, reducing the need for visits to the doctor’s office for tests and checkups.

• Medication Management

There are a number of IoT solutions already helping patients better track their medication schedule, including smart pill bottles and in-home medication dispensers that also alert both healthcare professionals and concerned friends and family if there is a problem.

• Data Analysis

Data-driven insights not only speed up the decision-making process of healthcare professionals, they also allow for better public health decisions overall, whether that is where to allocate money or where to build a new hospital.

Essentially, IoT can play a pivotal role in the future of healthcare, with many solutions already available today.  It is a vast area, though, so please download our IoT & Healthcare White Paper to learn more.

Retrofitting existing building stock

Every year, nearly 5 billion square meters of buildings are retrofitted. Retrofitting existing building stock is an effective approach when dealing with limited budgets, aging structures, and energy accountability, as it helps reduce energy costs, improves equipment performance, and extends the lifetime of the building.

If we look closer at energy, in the EU, buildings are responsible for 40% of total energy consumption and 36% of greenhouse gas emissions. Retrofitting ageing building stock presents a major opportunity to not just reduce carbon emissions, but to also reduce operating costs and provide more comfortable and healthier buildings for citizens. Retrofitting also has significant job generation potential.

Before IoT, tracking and collecting building performance data was a manual job – and it was tedious, inaccurate, and a slow process. Now, with IoT sensors and the data generated, it is possible to monitor and track a building’s performance in near real-time, giving crucial insights on the go, which leads to better outcomes.

When IoT sensors and smart technology are introduced into the picture, you can monitor and control the use and operation of building equipment, such as HVAC systems, lighting, and plug loads, you also get real-time data, all of which leads to detection and diagnoses of faulty equipment, energy efficiency, and even enhanced profitability.

These are just a few of the ways IoT is enabling smart, sustainable urban development. To learn more, download the Tele2 IoT Smart City White Paper, which covers this topic in depth. You are also welcome to contact us to learn more about how IoT can help your community address your challenges.

Learn more about how IoT can enable your business or community

IoT continues to drive the digitalization and datafication of both businesses and society in general. Connected healthcare, autonomous robots, smart farming… everything around us is being connected and as IoT technologies continue to mature, further benefits will be found, particularly with 5G and LTE-M as drivers.

So, as we move into massive IoT, what are some of the biggest trends we can expect to emerge or mature during 2022?

Healthcare

IoT has been enabling healthcare for a number of years already, and with the global pandemic still a reality, further innovations will emerge.  Connected healthcare is a broad use case, of course, encompassing everything from fitness trackers and remote monitoring to connected medical centers and telemedicine. The advances in connected healthcare have led to improved outcomes and better quality of life for patients.

One continued trend within healthcare will be the use of IoT devices to collect data on patient conditions. Using IoT devices means avoiding bringing large numbers of potentially infectious people together in close quarters, something that is critical during a pandemic. IoT devices and telecare will also allow doctors to continue to provide medical attention to a greater number of patients without the risk of infection via in-person visits Additionally, IoT devices will make healthcare available in more remote areas where there is less access to doctors or medical facilities. And speaking of medical facilities, IoT technology will be further integrated into everything from wheelchairs and defibrillators to oxygen pumps and even soap dispensers to ensure smoother operations at facilities.

And even connected drones are getting into the healthcare picture: Swedish company Everdrone, which delivers defibrillators via drone, recently delivered an emergency defibrillator in just three minutes. The connected drone was carrying a lightweight and easy to use defibrillator that arrived on the scene faster than first responders, something that surely saved the 71-year-old man’s life. These kinds of connected technologies will continue to expand within healthcare, leading to more successful outcomes, particularly in emergency situations.

5G growth

5G and IoT go together like peanut butter goes with jelly – and with 5G expansion will continue to accelerate IoT adoption in 2022. Why? Because successful IoT solutions increasingly require low latency and hyper connectivity, two things that 5G technology brings to the IoT table. As 5G coverage expands and 5G roaming agreements are hammered out, businesses will be able to offer services that would previously have been too costly or logistically difficult. Faster data transfers, increased coverage, and energy efficiency will become prime drivers of IoT growth and development.  That said, security concerns will continue to need attention, which means enhanced security will be another trend during 2022.

Security

Security has always needed to be top of mind when it comes to IoT and the expansion of 5G is only going to increase the need for enhanced security, in part due to the resultant increased number of IoT devices and thus attack surfaces.  The first half of 2021 saw 1.5 billion attacks against IoT devices, and this trend will not subside if security doesn’t become job one. Given that roughly 15% of businesses deploying IoT have not updated their security protocols and that there are very few government standards requiring businesses to stay on top of cybersecurity, it is imperative that IoT providers take up the slack and ensure their customers’ IoT solutions are not vulnerable.

The good news is that everyone from connectivity providers to hardware manufacturers are taking security much more seriously, and they are making sure that customers do as well. Additional layers of security are being added and the data collected from connected devices can actually be used to predict and prevent cyberattacks. There will be even more focus on cybersecurity tools in 2022 and businesses will increasingly understand that addressing cybersecurity is an essential part of their IoT solutions.

Sustainability

Sustainability will continue to be an important technology trend, with IoT in particular being used to facilitate any number of use cases. Everything from optimized fuel consumption in transportation to controlling, measuring and managing renewable energy sources such as solar panels will benefit from IoT solutions. Taking regular temperature and soil humidity measures in forests to prevent potential forest fire, utilizing water level sensors to enhance flood warning systems, using sensors on streetlights to measure and collect data about air quality – the possibilities will continue to grow during 2022.

Manufacturing

The manufacturing industry has always been a bit slow in adopting new technologies and IoT is no different – but 2022 will see that change. Manufacturers are now clear as to how IoT can benefit their setup and save them money. From preventive maintenance that reduces or eliminates production delays to enhanced operational efficiencies and improved safety – IoT brings a lot of benefits to not just the factory floor but also to the C-suite. You can learn more about the Internet of Industrial Things (IIoT) in the Tele2 White Paper.

IoT plays a crucial role in enhancing smart city applications through real-time monitoring and management of city processes. But with almost two-thirds of the world’s population predicted to be living in urban areas by 2030, one of the biggest challenges cities will face is waste disposal. The world produces 2.01 billion tons of solid waste annually, with the amount of garbage produced by urban dwellers on track to reach 3.40 billion tons by 2050. Waste disposal expenses are on the rise as well, with the World Bank predicting global garbage collection costs to top $375 billion in the next five years. Fortunately, smart city initiatives are driving innovation in the waste management sector. Valued at just under $1.5 billion in 2018, the smart management market is projected to top $5 billion by 2025.

Smart waste management has become an essential part of the smart city ecosystem, with IoT-enabled smart waste sensors enabling cities to optimize waste collection, reduce the number of overflowing bins, and manage resources. The use of IoT in waste management has the potential to reduce unnecessary expenses that are the result of operational inefficiencies in trash collection processes.  The number of smart bins is expected to reach 2.4 million by 2025, and according to Berg Insight, the rapid adoption of smart waste sensors will result in 29.8% growth through 2025.

Smart waste bins rely primarily on cellular networks, which accounted for about three quarters of connected waste collection points in 2020. While existing units can be retrofitted, wireless sensors are increasingly being pre-integrated into waste bins. And it’s not the conventional cellular technologies – 2G/3G/4G – that are driving growth. Instead, it’s LPWA (low-power, wide area) technologies (LTE-M and NB-IoT) that are leading the way. These technologies offer cost and power-efficiency options that leverage existing networks while also having strong built-in security, making them ideal for smart city applications.

There are three critical areas where IoT enables waste management processes.

Route optimization

Traditionally, waste management systems have used a pre-defined route based on historical patterns to schedule garbage collection and recycling point receptacle emptying, whether they were full or not. IoT devices turn this model on its head by using smart trash bins to detect location, temperature, and fill level in real time, and this data is then used to plan optimal collection routes, resulting in an efficient pickup process that saves fuel as well as manpower. Additionally, datahelps with long-term planning, such as where more bins are needed or where the number can be reduced.

The data gathered from smart bins also reduces the number of pissed pickups or the incidence of overflowing trash bins. If a sensor detects that a bin is full, an automatic alert will be sent to waste managers, who can schedule an extra pickup.

Smart recycling

According to a report from the UN, 50 million tons of e-waste is generated every year. And as the number of electronic devices ending up in landfills is increasing all the time, e-waste has been identified as a key aspect in solid waste management. Discarded electronic devices often contain harmful chemicals, such a lithium from a smartphone battery, which can leach into groundwater. At the same time, these devices present an opportunity to reclaim precious and base metals, such as gold and copper, in an efficient way. IoT management systems allow for a digital record to be made of devices and batteries and once the battery dies, the location of phones, IoT sensors and other electronic devices can be activated, with manufacturers or waste managers scheduling a pickup – and even bringing a replacement, long before they ever end up in a landfill.

The ability to embed IoT technologies into receptacles also allows for the use of machine learning, AI, and computer vision that can process the type of material in the container, leading to better sorting and reduced human error, as well as an easier job downstream at recycling centers. Additionally, emerging smart bins are able to identify and sort waste into categories like glass, paper, plastic, and metal, compress it and notify sanitation workers of fill levels of each waste category, enabling a more sustainable society.

Data analysis

Connected devices record the speed at which bins fill up, while also monitoring how often they are emptied, and what they contain. IoT management systems are where all of this comes together and shines. Data unlocks endless possibilities, such as planning better distribution of bins, eliminating incorrect disposal practices, and even reducing the amount of waste that ends up in landfills.  Data analytics can help assess trends to better plan waste management processes, leading to a better allocation of resources and a happier populace. And speaking of that happier populace, a smart city app can give citizens the ability to input on-the-ground information, which can be used both in real time, such as when someone reports a smashed bin or similar, as well as adding that data to data collected from other sources, which can further optimize processes.

If you would like to learn more about how IoT can enable your smart city or business, please get in touch..

Learn more about how IoT can enable your business

IoT isn’t an entirely new concept for the hospitality industry. Many players have already incorporated IoT into their businesses and are using it to deliver benefits that run from delivering a more seamless customer experience to optimizing energy costs. According to PwC (PriceWaterhouseCooper), 70% of hospitality executives report already having active IoT projects, and they are using IoT to bring efficiencies to both the front of the house and the back of the house.  Here’s how.  

Hyper-personalization

Connected hotel rooms allow guests to control various room features, such as heating, ventilation, and air conditioning systems, from their mobile phones or from a tablet provided by the hotel.  Guests can also use their devices to control the television, lights, and other electronics in the room, and all that data that is collected can be used by hoteliers to anticipate guests’ needs and provide a personalized experience.  Each time the guest enters their room, an automated personalized greeting can be sent, while at the same time the room automatically switches to the last saved preference, such as playing music, streaming TV services, adjusting the lighting, or opening the curtains. Additionally, by combining smartphone capabilities with beacon technology and other sensors, even more customized information can be sent to guests, such as capacity information for on-site amenities like the spa or pool, wait times for dining, or recommend suitable events close by.  Additionally, the rise of autonomous delivery robots can automate hotel room service, handling room deliveries quickly, safely, and reliably.

quotes icon

For repeat visitors, actionable data allows hoteliers to preselect things like a guest’s preferred room location and bed type, along with presenting a welcome tray featuring their preferred snacks or wine. In other words, you can roll out the red carpet for your VIP customers with ease.

Seamless check-in

Instead of waiting at the front desk to get your room key, IoT eliminates the need for elaborate check-ins. With IoT hotels can automatically send a digital key to a guest’s mobile phone shortly before check-in, and this digital key can not only communicate with the door, it can also eliminate the need for checking in at the front desk, because the first time it is used to unlock the guest’s room, they are automatically checked in.

Predictive maintenance

Preventive maintenance has been the standard for hotels, with regular maintenance checks designed to reduce guest complaints and prolong equipment life. With IoT, predictive maintenance allows you to address equipment failures before they happen. Staff are provided with real time information about the operating status of equipment and appliances, with alerts being sent when there are any warning signs of deterioration or unusual performance. For example, connected thermostats and air conditioners can identify equipment issues before there is a full breakdown. Sensors indicating water usage going up in a particular room while no one is inside could indicate a leaky faucet or toilet, while sensors on pipes throughout the building can also identify leaks or other problems. The main benefit is that repairs can be carried out quickly or replacements fitted before the equipment fully stops working, something that is crucial when we’re talking about equipment or appliances that the hotel cannot operate without. It’s also a money saver, as an early repair will cost both less money and use less manpower.

Energy savings

When it comes to energy savings, IoT has some pretty obvious applications, such as monitoring the occupancy of a space to optimize heating/cooling and lighting within an environment, which leads to decreased energy consumption and therefore reduced energy costs. This is important because utility costs represent a massive portion of operational expenditure and electricity costs are going up. And energy savings means you can reach your sustainability goals.

quotes icon

A connected energy management systems allows you to monitor and manage parameters online, giving you the ability to adjust settings quickly and easily in all or some of your guest rooms – without compromising on guest comfort.

Data can help determine where things like insulation, windows, equipment, etc. need to or can be improved. Integrating different systems, such as elevators, guest room management, workforce, and property, provides logic between different data points, bringing awareness of what is going on across your entire operation, allowing for better planning of energy needs, both in real time and for long term planning.

Asset management

From machines to food trays, IoT technology can help manage assets and inventory in real time, alerting staff to service needs, while also enabling long term planning needs.  Connected asset trackers placed on both indoor and outdoor equipment speed up the process of finding needed machinery and equipment, shortening or eliminating wait times for things like luggage racks. Sensors on room service trays can alert staff when they have been left outside a room for pickup. Smart equipment enables staff to keep tabs on inventory such as towels, dinnerware, or anything else automatically, allowing them to work more productively and efficiently.

Safety & security

Automated smart door locks, where guests are sent a digital key on their smartphone, is one great security feature enabled by IoT. But hotel safety isn’t just about guest room. Equipping a hotel with IoT means the entire site can be protected using customized programs and protocol settings, which, in the event of a security breach, can instantly trigger door locks, emergency lights, and automated alarms sent to authorities. Biometric-based technologies that support facial recognition can be used to streamline check-in, but they can also help detect suspicious behavior and identify people who might cause problems. Non-intrusive connected buttons that are only activated by employees also give staff a way to request assistance.

The future

While IoT is already being implemented in hotels in myriad ways, the future may bring staff-less hotels. While in theory this may make sense due to money saved and revenue boosted, what is more likely is that as IoT in more closely implemented, many services will become automated, with staff being employed for better customer engagement.

If you would like to learn more about how IoT can enable your business, please get in touch.

IoT can’t stop disasters from happening, but it can help identify life-threatening hazards, alert authorities at an early stage, and assist in rescuing those affected, saving lives, resources, and money. Through the use of IoT technologies emergency management and response can be enhanced, and as a result have far better outcomes.

Australian bush fires, Indian monsoons, earthquakes in Japan, Northeasters along the US east coast – most natural disasters are inevitable, but the worrying news is that they are on the rise.  According to a United Nations (UN) report from October 2020, extreme weather events have dominated the disaster landscape in the 21st century, and it can be linked to a rise in climate-related disasters, including extreme weather events.

To put this in perspective, between 2000 and 2019, there were 7 348 major recorded disaster events, which claimed 1.23 million lives and affected an additional 4.2 billion, resulting in nearly $3 trillion in global economic losses. What makes these figures stand out is that they show a sharp increase over the previous twenty years, which saw just over 4 000 disasters which led to roughly $1.6 billion in economic losses and claimed 1.19 million lives.

Floods and storms have seen the most prevalent increase, with floods more than doubling, but there have also been major increases when it comes to drought, wildfires, and extreme temperature events, along with a rise in geo-physical events, such as earthquakes and tsunamis, which have killed more people than any other natural hazard. Add man-made disasters, such as hazardous material spills, infrastructure failures, and explosions, to that pile and it’s obvious that emergency preparedness has to not just improve but become more efficient.

quotes icon

While we can’t do away with disasters, we can improve both our preparedness and our response through IoT-enabled prediction and early warning systems, along with IoT-enabled response systems.

According to the Global Disaster Preparedness Center, there are four phases of emergency management: Mitigation, Preparedness, Response, and Recovery.

Mitigation
Minimizing the effects of disaster, such as implementing building codes and zoning, vulnerability analyses, public education.

Preparedness
Planning response, including preparedness plans, emergency exercises and training, warning systems.

Response
Minimize hazards created by disaster, such as search and rescue, emergency relief

Recovery
Return the community to normal, through things like temporary housing, grants, medical care, and IoT can be a game changer in a number of ways.

Through the use of, among other things, sensors, robots, and unmanned vehicles, IoT helps minimize risks and improve response by transforming disaster management from reactive to proactive. And the data generated by these devices minimizes the risk of being taken off guard while helping everyone to make more informed decisions. Additionally, enhanced communications systems assist in rescue work. Here’s how:

Mitigation
IoT devices and sensors can collect near-real-time data on things like water levels, volcanic activity, and barometric readings. Sensors can detect wildfires, tornadoes, cloudbursts, volcanic activities, earthquakes, etc. and send early warnings. Additionally, critical infrastructure (or any infrastructure, really) can be protected through predictive maintenance. Hazard mitigation is enabled by using sensors to monitor pollutants and contaminants, including radioactive situations.

Preparation
Emergency preparedness can be enhanced through IoT-enabled response mechanisms, procedures and rehearsals. Real-time data from sensors, cameras, and other connected devices can be embedded into infrastructure, making it possible to monitor conditions in real time, as well as receive vital data both historical and in real time. This data allows city managers to prioritize repairs and employ preventive maintenance. And the connected devices deployed in buildings, bridges, roads, and other infrastructure can also be used to provide alerts and enhance communications. Additionally, through the use of IoT devices, strategic reserves of food, water, clothing, medical equipment, and other vital supplies can be monitored to ensure acceptable levels.

Response
In the immediate aftermath of a disaster, situational awareness is critical to ensuring resources are prioritized in order to have the most impact and help those most in need, but as operations go on, recovery efforts must be repeatedly updated based on changing conditions. Widely deployed IoT technology within a city’s infrastructure, in forest areas, or anywhere else, for that matter, can be re-tasked to identify emergency conditions, people who are trapped, or the status of things like the power grid. First responders need actionable information and IoT can facilitate response planning and actions through the use of sensors to monitor the movement of key personnel, as well as sensors and IoT-enabled cameras on the scene of the incident. Situational awareness and incident management can be achieved through things like smart clothing, which can monitor and report things like a firefighter’s vital signs and on-scene conditions, allowing them to be pulled from the scene if things become too dangerous. First responders can also be equipped with audio and video sensors, or supported by autonomous drones and vehicles, allowing dangerous situations to be monitored and assessed from a safe distance.

Automated IoT systems can send out alerts, news, and other digital resources to keep the public informed in real time. Mobile updates can provide vital information, such as where a tornado has touched down, or provide information of how to keep safe, where to find a safe location, and resources for seeking shelter or life-saving supplies. Connected digital signs, such as at bus stops, on roadways, and in city squares, can also be used to spread critical information quickly. Battery powered IoT devices can enable limited communication services, such as emergency micro-messaging.

Recovery
Disaster recovery efforts and operations can be extremely challenging, placing significant demands on multiple resources, including both local and international emergency response personnel, NGOs, and the military, all of whom must collaborate and share resources and information in order to execute recovery quickly and effectively. IoT devices can help in search and rescues operations, as well as monitor post-disaster conditions and levels of vital resource stockpiles. IoT can continue to be used to disseminate information to the public while normal communications are still being repaired.

If you would like to learn more about how IoT can enable emergency management, please get in touch

As LPWA (low-power, wide area) networks come into their own as an IoT technology, it’s important to look at what the different options are and how they can impact your deployment, both now and in the future. There are two main categories of LPWA technologies: those deployed on licensed radio spectrum and those deployed on unlicensed radio spectrum.   

LPWA on the licensed spectrum

MNO’s (Mobile Network Operators) procure licenses to operate within dedicated parts of the radio spectrum. This mean that no one else is allowed to use that part of the spectrum unless the operator allows them to. Since the operator have full control, they can provide high transmission quality, data security, stability, scalability and speed. In addition, they ensure that the quality remains over time, by tweaking the network as the subscriber’s usage patterns evolve. 

There are two key types of LPWA technologies deployed on licensed spectrumLTE-M and NB-IoT Both are acknowledged as the technologies that will be part of the 5G mMTC (Massive Machine Type Communications) standard which will enable massive IoT, with LTE-M in particular emerging as the strongest option for migrating legacy 2G and 3G devices, and also supporting new applications that require higher bandwidth along with lower power consumption and extended battery life. 

LTE-M and NB-IoT are both based on standards set by 3GPP, the organization that defines standard for technologies used within the telecom industry. More than 900 mobile operators around the world support 3GPP standards, covering the majority of the globe where businesses operate. These standards make it easy for devices to seamlessly roam from one network to another, making it possible to create one device that can work on network across the globe. The standard also ensures the longevity of a technology, a very important aspects when deploying an IoT solution that is meant to last for many years. 

LPWA on the unlicensed spectrum

Unlicensed spectrum isn’t owned by anyone and can be used free of charge, without any rules on how to get access at any given time. This allows for a lot of flexibility, but since it doesn’t require a license or fee it can become crowded. Everything from WiFi routers to cordless telephones and other communication devices also use unlicensed spectrum, meaning that IoT solution deployed in the unlicensed spectrum run the very real risk of interference. Technologies such as LoRa and Sigfox are based on unlicensed spectrum.  

While you might see upsides to these technologies, such as deceptively cheap devices, it’s important to consider the whole picture. Basing an IoT solution on these technologies often mean that you need spend money to procure and operate your own radio network, since most countries in the world does not have nationwide LPWA networks on the unlicensed spectrum.  

With the unlicensed part of the radio spectrum open for anyone, it makes it easy for anyone to establish their own private network. However, there is the risk that anyone else can do the same, resulting in interferencebetween networks. This is the same phenomenon that you might have experienced with your home Wi-Fi. When you first set it up it works great and provide high speeds, but 6 months later the neighbor buys a new Wi-Fi router, and all of a sudden you have a hard time getting a reliable connection since you are now (unwillingly) sharing the same part of the unsilenced spectrum.   

Let’s look at it another way

Think of licensed and unlicensed spectrum as the difference between an elegant dinner party at an exclusive restaurant and a party you might have attended back at university. Both start pretty much the same way: people arrive, there is plenty of room to move around, you can hear each other talk, and when the music comes on there’s room to dance. Fast forward a few hours, though, and things have changed: those who are at the dinner party are still able to converse and there’s plenty of elbow room at the table. At the university party, however, loads of people have crashed, everyone is shouting over the music, and if you try to dance there’s a good chance you’ll knock people over the second you break out your moves. Licensed spectrum is the elegant dinner party, where only the people invited are there and things are under control. Unlicensed spectrum is the frat party, where the lines to the bathroom are long and no one can hear what anyone is saying.  

What happens as the parties evolve? If new guests show up to the dinner party at the restaurant it’s not a problem because the restaurant staff are experienced and prepared – they’ll just bring an extra table and some chairs, and things will carry on as before. At the frat party, on the other hand, you don’t even know how many people will show and there’s a good chance endless strangers will crash the party and chaos will ensue.  

So, how does this relate to radio spectrum?  If you use unlicensed spectrum you have no idea who is joining the party – you might be one of the early arrivals but in a year or two there could be all sorts of devices crowding into your space, which would greatly reduce your ability to have efficient and IoT connectivity.  Using licensed spectrum, on the other hand, means you always have a professional taking care of the space your devices are communicating within, so you never have to worry that the service is being degraded.  

If you would like to learn more about how IoT can enable your business, please get in touch.

Learn more about global cellular connectivity

LTE-M, the low-power, wide area (LPWA) cellular technology, is specifically designed for IoT. It prioritizes a powerful reach over long distances and scalability for large or growing deployments, allowing the connection of simple devices that transmit low volumes of data over long periods of time with low power consumption. 

These features make LTE-M and other LPWA technologies ideal for any number of use cases, opening up the very real possibility of connecting all kinds of assets through a single, secure, and lasting solution. In other words, LTE-M will lead to massive IoT, empowering organizations to work with increased operational efficiency while gaining greater insights into their entire business.

Logistics

LTE-M is ideal for assets on the move because devices need to operate without a fixed power supply or regular recharging. And due to the extensive coverage it provides, LTE-M allows you to track the location and status of assets such a vehicles or containers while still maintaining an excellent battery life. Any number of things can be tracked and recorded, including fuel consumption, stops and starts, toll fees, route taken, driver behavior, etc. You can track the conditions of the goods, looking at things like humidity, temperature or other container conditions that could have an adverse impact on your assets, which allows you to react sooner, rather than when it might be too late.

Industry/Manufacturing

IoT is already being used to improve the safety and efficiency of industrial production, but monitoring things like petrochemical and waste storage or hazardous fluid tanks can be challenging, due to remoteness and dangerous conditions With LTE-M, low-power, low cost sensors enable monitoring of everything from humidity and temperature to impacts and breakages, enabling better use of manpower, keeping safety standards high, and saving money by catching problems early.

LTE-M Benefits

Wider coverage

LTE-M allows you to operate in extremely challenging locations, such as under manhole covers, in underground pipes or in car parks, basements or other remote areas. It is suitable for both static and mobile use cases.

Lower costs

LTE-M-enabled IoT devices are cost effective to produce, and inexpensive to buy. They also cost less to scale up. Longer battery life means no external power supply is needed, while maintenance costs are reduced due to fewer onsite visits.

Enhanced security & reliability

LTE-M networks are secure and reliable, with carrier grade security. Since LTE-M operates on the licenses spectrum, devices are not subject to radio interference or congestion, a risk that unlicensed LPWA technologies face since there is no control of the radio environment.

Future proof

LTE-M is the standard set by 3GPP (Third Generation Partner Project), and is neither vendor nor operator dependent. Instead, it is supported by multiple providers, as well as hardware manufacturers globally. LTE-M is set to become a part of the 5G standard as it evolves, ensuring it will be supported for a very long time.

Smart Cities

In order for a smart city ecosystem to become a reality, there is going to have to be a mass deployment of IoT devices across everything from car parks to street and traffic lights to buildings, public transport, and other public spaces. This mass deployment will be interconnected, making city life easier to navigate in any number of ways, whether that means knowing where you can find a free parking space or when the next bus will arrive, as well as keeping public areas more secure with real-time monitoring of public spaces. Mass deployment brings new cost requirements in order to make projects feasible, thus its support for low-cost devices makes LTE-M a true enabler for these use cases.

Utilities

LTE-M-enabled devices allow you to monitor remote infrastructure and assets, such as underground pipelines and wind, solar, or thermal generation equipment, as well as smart meters. This will improve efficiencies, allow for predictive maintenance (which in turn leads to cost savings), and provide vital information on things like energy consumption, leading to improved sustainability.

In real terms this could mean monitoring ageing water supply systems, which are prone to leakage and other issues but where challenges are difficult to identify before they become a real problem and cost everyone a lot of money. Sensors detect leaks much more quickly, which allows them to be repaired faster.

LTE-M can also enable use cases where actuators in the field need to be triggered with very low delay, thanks to LTE-M’s very low latency characteristics, especially when compared to other LPWA technologies.

Agriculture/Environment

It’s not easy to change a battery on a cow! Because LTE-M provides the required mobility, reliability, and remote coverage, the tracking and monitoring of livestock such as cattle, as well as wild animals is greatly enhanced.  Out in the field, condition monitoring is simplified, giving you the ability to monitor things like soil quality, weather, temperature, humidity, etc. And governmental agencies and scientists can use LTE-M sensors to analyze water levels, predict flooding, and issue early warnings.

If you would like to learn more about how IoT and LTE-M can enable your business, please get in touch.

Learn more about IoT & global cellular connectivity

In the midst of the ongoing global pandemic, holiday shopping continues to be impacted, with in-store shopping being categorized as a high-risk activity in many areas and many stores limiting the number of shoppers allowed inside the store at one time. This has led to a huge boom in online shopping, which means retailers not only need to ensure safe and satisfactory in-person customer experience, they also need to offer top-of-the-line online and
delivery experiences. IoT is proving critical in both areas.  

Even in “normal” times, the frenzied holiday shopping season has retailers scrambling to keep warehouses and shelves well-stocked, particularly when it comes the must-have buys of the season, such as the latest smart phone or that inexplicable toy that every child is clamoring for.  But with a global pandemic impacting everything from shopping behavior to global supply chains, it is more important than ever for retailers to find new ways to deliver a high quality shopping experience, whether in person or online. Here’s how IoT can increase efficiencies and make a difference:

Managing store capacity

With ever-changing capacity guidelines and safety rules, enforcing social distancing can be a challenge.  But by placing IoT sensors at entrance and exit points and/or on shopping carts, retailers can monitor foot traffic in real time, getting accurate and up-to-the-minute numbers on how many shoppers are in the store. This enables the efficient management of capacity, ensuring both shopper and employee safety. Additionally, retailers can hand out IoT-enabled wearables such as wristbands, key fobs, or badges that are paired with the shopper’s smartphone through the store app or a third-party contact tracing app – the wearable will detect when shoppers are too close and both notify them and record the incident, allowing retailers to understand traffic patterns and capacity better.

Inventory management

Even during a pandemic, people want or need to shop, particularly during the holiday season, and retailers need to keep warehouses well-stocked in order to avoid running out of high-demand gifts, food items, and other goods. Manually counting inventory is time consuming and labor-intensive and in the case of in-store inventory control, increases the risk of virus exposure. IoT-enabled sensors can detect product weight on shelves, meaning a rapid decrease in weight would indicate the product needs to be replaced, and in the case of stagnant weights, retailers will know not to place new orders, reducing unnecessary costs. Additionally, understanding what is moving off in-house shelves and what is moving through e-commerce channels allows retailers to understand the flow of goods and where they need to be placed.

Delivery guarantees

Without a doubt the advent of Covid-19 has pushed more and more shoppers online and this means ensuring a positive online shopping and delivery experience is critical to customer satisfaction.  Attaching IoT-enabled devices to shipments and containers gives retailers into a shipment’s whereabouts, while also providing customers with real-time location updates. This allows retailers to keep customers abreast of approximate delivery times. Data collected by IoT devices can also drive supply chain efficiencies through the optimization of shipping routes for faster delivery. IoT can also identify warehouse delays and optimize operations for quicker and better service and deliveries.

While IoT can help retailers cope with the holiday shopping rush, its benefits can be enjoyed year-round. If you would like to understand more about how IoT can help your business, please get in touch.

Adoption of IoT within healthcare continues to grow at a rapid pace, with one of the biggest growth areas being Remote Patient Monitoring (RPM). And while RPM was already taking off pre-Covid, the global pandemic has driven home the need for remote care. Nearly 90% of healthcare providers have invested in or plan to invest in Remote Patient Monitoring (RPM). Remote Patient Monitoring technologies improve patient and clinical experience, and lead to better outcomes and lower costs.

What is Remote Patient Monitoring?

Remote Patient Monitoring is a subset of telehealth that uses digital technology to facilitate the collection, transmission, evaluation, and communication of patient health data via electronic devices, which include wearable sensors, implanted devices, and handheld instruments. These monitor patient health outside traditional clinical settings, as well as collect medical and other forms of health data on everything from blood sugar, blood pressure, and blood oxygen levels to heart rate, sleep patterns, and bathroom usage.

quotes icon

Remote Patient Monitoring is for ideal patients who are, for example, recovering from surgery, dealing with a chronic condition, or aging in place. RPM can be anything from tracking vital signs to a wearable that detects falls or lack of movement.

The collection of patient data outside of medical centers facilitates care for conditions ranging from chronic diseases to recovery from acute episodes, and not only does RPM allow for better, more precise care, it is particularly beneficial to elderly and vulnerable patients and patients with multiple comorbid conditions as it allows these patients to continue living in their own homes for longer periods of time. Additionally, RPM reduces hospitalizations, readmissions, and length of hospital stay, which in turn improves quality of life and controls costs and enables doctors to act preventatively in regard to the correct medicine, which helps avoid complications.

Patient and provider buy in

Each year a multitude of innovations are brought to the market but many of these solutions don’t take off due to a disconnect between patient-provider needs and obstacles within healthcare systems that prevent the progression and successful adoption of RPM.

Remote Patient Monitoring programs are only successful when the patient understands and welcomes the value of the service and commits to doing their part. Devices must be easy to use, and their benefits clearly laid out to the patient. An easy, out-of-the-box user experience will go a long way towards smoothing the path of patient adoption.  If devices are too complex to configure, uncomfortable, or difficult to use, patients will not accept them.

Not all monitoring systems are created equal, though, and a multi-platform approach, such as apps that can handle multiple conditions across a wide range of devices, is key to fulfilling the potential of RPM. These devices need to be able to filter the incoming data in order to avoid alert fatigue, and they must be connected to an existing healthcare infrastructure. Additionally, security and communication standards must be prioritized in order to protect patient confidentiality.

The benefits

There are any number of benefits associated with Remote Patient Monitoring, and as the spread of RPM continues, these benefits will become entrenched:

  • Improved patient compliance
  • Improved patient outcomes
  • Fewer hospital visits/stays
  • Enhanced post-hospital care
  • Improved medical staff efficiency
  • Cost savings/better use of resources

Many of these benefits are obvious; for example, virtual check-ins allow healthcare professionals to schedule far more appointments than if they had to drive from patient to patient. Additionally, more regular check-ins can be scheduled, allowing patients to ask questions and providers to ensure patients understand and carry out instructions regarding medication, therapy, etc. This is particularly important when it comes to remote locations where travel between patients means only a few visits can be scheduled each day.  RPMs also allow the involvement of not just the patient, but also their loved ones, who can help monitor both the care provided and that the patient is following instructions without disrupting their day with in-office visits.

Why cellular connectivity?

When it comes to Remote Patient Monitoring, your IoT solution needs to be reliable, flexible, and secure. There are a number of connectivity options to consider and while no option is necessarily bad, some are better suited to RPM than others.

Connecting remote medical devices is not always as straightforward as it sounds. Available internet access in a patient’s home is not a given, particularly when it comes to the elderly, and unreliable and insecure networks can be a problem. Cellular connectivity is ideally suited to RPM because it is not dependent on in-home internet availability. Additionally, with the right IoT provider, you will have the benefit of roaming, which means you will always be using the best available network, something that is crucial when working with mission-critical solutions. And since healthcare applications require very high availability, it might come in handy to have multiple providers to improve that availability. That’s where eSIM capabilities can come in handy, as you have primary and secondary CSP IMSIs.

Another factor to consider is having available the right connectivity management platform in order to manage what could be a large number of devices on a local, regional, national, or even global scale.

There are three things to consider when it comes to realizing the full connectivity potential of your RPM solution:

  1. The connectivity solution meets your requirements, including availability and security
  2. The SIM management platform is easy to use and offers you the support you need
  3. Real time visibility and management of your device connectivity

Security

And finally, when it comes to healthcare in any form, security and patient confidentiality are paramount.  Medical data is extremely sensitive, and it is important that it is kept secure when being handled, transferred, and read.

Because of the sensitivity of the data, every part of your IoT solution needs to be secure. It cannot be overstated how important it is to choose an IoT partner who is able to support the high level of security needed. Additionally, even the slightest hiccup could have major ramifications, so it is critical that your IoT provider is also able to provide a high-level of 24/7 support in order to swiftly mitigate any potential issues.

If you would like to learn more about how IoT can enable your healthcare solution, please get in touch.

Learn more about IoT & connected healthcare

For many building owners or facility managers, the Building Automation Systems they already have in place is functional and well-established and the building is generally operating the way it should. And for a long time, many in the industry were hesitant to use IoT to create smart buildings – they thought it would introduce unwanted costs and unnecessary complexity.  Times have changed, though, and today IoT is having a transformative effect on smart building automation and control, offering both cost savings and optimization opportunities, as well as increased sustainability 

The majority of Building Automation Systems (BMS) we see today serve the same purpose they did when first introduced in the late 1800s: simplified management of core building functions, particularly when it comes to HVAC (Heating, Ventilation, and Air Conditioning) equipment. While some things have evolved, such as the shift from pneumatic systems to computer-based control systems, most buildings remain energy inefficient and difficult to maintain, and often don’t fully serve the needs of occupants.  

By disrupting long-established BMS models with IoT, there are significant opportunities to improve building efficiency in a variety of ways, which in turn will lead to cost-savings and the development of innovative services. Additionally, the way buildings are being planned and constructed is also changing, with IoT technology being used from the word go to reduce power consumption, increase energy savings, and create more sustainable buildings.  

Here are five areas where building automation can have a big impact:  

  • Energy efficiency
  • Security & safety
  • Water management
  • Maintenance
  • Occupant comfort

Traditionally, these systems have often been disconnected from one another and from the central BMS. In a smart building, though, these systems feed into a central network and operate in sync with one another, leading to improved operational efficiencies. 

Energy efficiency 

Energy efficiency has long been at the core of BMS implementation, yet buildings still account for roughly 40% of global Greenhouse Gasses (GHG) – with 30% of building energy being wasted. Despite efforts to reduce their footprint, most buildings remain largely inefficient. HVAC equipment has traditionally been regulated in a uniform, predefined way, leading to overheating or underheating across the facility.  

Smart energy can be created by using IoT technology to identify key areas where energy is wasted and where energy costs can be minimized. Data generated by sensors at the building level can be used to optimize and regulate HVAC equipment. For example, your building’s HVAC system is set to operate until 8 PM, but your building rarely has anyone in it after, just say 6 pm.  Systems can be connected to automate HVAC operations, turning off lights when someone leaves a room or controlling room temperatures based on occupancy. By making relevant adjustments you can save on both energy and costs. Additionally, wireless submeters deliver consumption data on individual assets or building areas, and these insights allow you to swiftly identity and locate where improvements can be made.  

Building automations systems are already being widely introduced into new builds, but they can also be retrofitted to existing buildings, giving you the energy saving benefits of a smart building.  

Security & safety 

Access control is a fundamental aspect of security for every building and organization where restricted access is a necessary, including for schools, hospitals, offices, and even hotels. The primary driver of access control is to safeguard people and to protect physical and intellectual property. Most of us probably already use key cards, but with IoT another layer is added to the mix.  With key cards and connected ‘checkpoints’, remote access control is possible, with doors that can be locked remotely, and the ability to track and program door access at any time. You can customize who has access to which room, and you can make changes as needed – and you can do it immediately.  

quotes icon

Data collected by smart access systems can in turn be used as part of a more cohesive smart building strategy, helping you understand usage patterns and traffic flow. That data, of course, needs to be protected.

Someone gaining access to your smart building data can leave your building inoperable or with long periods of operational downtime. Critical and/or sensitive data can also be breached, and there can even be a threat to physical safety. As a result, it’s important to secure not just things like hardware and software, but also to address rights management and how information is stored. You can learn more about IoT and Security here 

Water management 

The average person spends about 90% of their time indoors, and the average family uses around 300 liters of water each day, while the average office worker uses up to 30 liters per day while at work. At the same time, water resources are becoming increasingly scarce, so monitoring water consumption and taking appropriate measures to reduce it is imperative – but keeping track of it manually is pretty much impossible.  

Embedding IoT-enabled sensors in water supply channels that go to toilets, bathrooms, kitchens, water tanks, and other water consuming things gives you the data you need to understand where excess consumption is happening. Sensors can also alert facility managers to other issues, such as water leakage or other problems with remote pipes. This can have a two-fold impact: water leakages can have knock-on effects, causing damage to a building’s infrastructure or promoting the growth of mold. And a mere 3.2 mm crack in a pipe can cause up to 1000 liters of water leakage a day.  

Understanding and being aware of problems before they spiral out of control saves money and limits disruption.

Maintenance 

In the IoT world we talk a lot about maintenance – and more specifically, predictive maintenance – because we know that the longer a potential maintenance problem goes unchecked, the more likely it will be bigger and more challenging to fix. And having equipment out of commission or in disrepair can mean potential health and/or safety concerns. 

In a smart building, IoT sensors and other hardware devices monitor the state of your building and all the equipment in it. This lets you know when maintenance needs to be performed before there is a problem, doing away with scheduled and often unnecessary maintenance rounds, which means better use of manpower and cost savings.   

Additionally, unexpected issues are bound to arise, and they are often not visible to the naked eye. Sensors can detect potential problems long before anyone in the office or home becomes aware and will send alerts and information to building managers so that they can act immediately, staving off what could be a costly breakdown of a system or piece of equipment. This also reduces tenant disruption and saves money in the long run.  

Occupant comfort 

And finally, the whole idea of keeping a building or facility running smoothly is to keep the people who work or live inside it comfortableFacility owners and managers know and understand the importance of good tenant relationships, and smart buildings are designed to support that.  

Many of the above areas contribute to occupant comfort, with indoor temperatures, air quality, lighting, and humidity all playing into occupants’ well-being and productivity. IoT sensors monitor all of these and allow you to fine-tune as you go, helping you to maintain an optimal and healthy indoor environment.  Data from sensors can also help you accurately assess traffic and usage in different parts of the building in order to prioritize things like cleaning activities, ensuring good sanitation and well-maintained amenities.  

At the end of the day, IoT can help you understand how your building or facility is operating on many different levels, while also ensuring safety, security, and comfort.

If you would like to learn more about how Tele2 IoT can help you improve your building management, please get in touch. 

Energy consumption is growing every year, with the IEA (International Energy Agency) predicting global energy demand will increase by more than 35% over the next two decades. But while energy companies are already rushing to meet both current demand and the predicted increase, IoT is increasingly being implemented to make more efficient use of energy resources.

There are a number of ways IoT is helping energy companies best utilize their resources. Smart meters connected to a smart energy grid allow companies to more effectively manage energy in buildings. Cities, which will continue to face the challenges of rapid urbanization, are developing unified platforms that incorporate smart electricity, water, and gas meters. Specifically, IoT will enable cities and the utilities industries to make consumption more efficient, while in more rural areas IoT can be used to tackle one of the biggest problems: agriculture water waste.

Everything from electricity to water to sewage falls under the utility umbrella.

The Benefits

• Energy efficiency
Due to improved control over energy consumption, utility companies can significantly reduce waste, resulting in both cost savings and a positive impact on the environment

• Cost savings
Speaking of cost savings, IoT solutions lead to reduced maintenance and operating expenses, as well as better utilization of human resources.

• Reliability
In the US alone, outages cost energy companies around $150 billion annually, with roughly 25% of outages caused by equipment failures. Through the use of predictive maintanence and real-time monitoring, connected systems are far more stable and reliable.

• The power of data
The data from connected energy systems offers real-time insights, as well as the possibility to find patterns and implement longer term strategies

Smart grids

Thanks to the rise of solar and other sustainable technologies, the energy is become more distributed. Solar capacity in residential areas has experienced rapid growth in recent years and, according to some reports, could triple by 2025. The result is that both homeowners and businesses can now generate their own electricity through rooftop panels. Some are even using small wind turbines on their property. These and other developments represent a major shift for energy companies because in addition to their own facilities, they need to manage the growing number of energy resources spread across the grid.

IoT technology is instrumental in enabling the distributed energy transformation through detection of changes in electricity supply and demand. IoT sensors and the data produced gives operators the knowledge and insights they need into order to react to changes quickly and manage demand more precisely. Sensors places at substations and distributions lines can provide real-time power consumption data that can be used to make decisions about network configuration and load switching. They can also send alerts about outages, which in turn means operators can quickly turn off the power to damaged lines, preventing numerous hazards, such as electrocution and fire. Predictive maintenance also leads to reduced costs and better and safer usage of human resources.

Additionally, IoT technology provides more and better information to customers about their energy usage. Smart meters collect data on usage, sending it to both the utilities companies and the customers. Smart devices in homes and/or commercial buildings can measure power consumption when it comes to individual appliances, identifying waste and promoting more thoughtful use of resources.

Water Management

We all know to not let the water flow while brushing our teeth or run the dishwasher if it’s only half-full, yet waste of resources such as water continues at a staggering rate.  While less than 1% of the world’s water supply is fresh water that is safe and available for us to drink, the United Nationals Development Program says that water scarcity is mainly caused by poor management. It is predicted that more than half of the global population will face water scarcity by 2025, but IoT can be a key player in reversing this trend.

Conservation is a key area when it comes to water management, particularly when we’re talking about urban areas, where tracking water consumption can be challenging. IoT technology brings transparency and greater control to the entire water supply chain, allowing the optimization of water treatment, production, distribution, and consumption.

Sensors can measure the quality of raw catchment water, as well as the chemical composition in the water after treatment and wastewater. They can track changing quantities in the storage reservoir, pipe pressure in the distribution pipeline, leakages, and wear and tear on equipment that processes and distributes water to end-users. The data generated by the sensors reveal key insights into the changing conditions of water resources and equipment, allowing data-driven corrective measures on demand. Sensors can also track usage patterns. All of these factors lead to saving money, resources, manpower, and overall smarter water management.

Agriculture and wasteful irrigation systems account for up to 70% of global water usage and according to the World Water Forum, much of that comes from wasteful use. This is due to the process of irrigation following an automatic schedule, irrespective of weather conditions or moisture present in soil. Through the use of data collected by IoT sensors out in the field, which will give insights into weather conditions, soil moisture, and other factors, irrigation can be streamlined, with only the right amount of water at the right time being used.

If you would like to learn more about how Tele2 IoT can enable your business, please get in touch.

IoT and sports – two words that not many thought we’d see in the same sentence, but it turns out that IoT is having a growing impact on sports and it’s gaining more traction every day. Here’s how it’s happening. 

Player performance, health & safety

By combining analytics with digital sensors, wearable technology, and video of matches, coaches are using data to obtain metrics on player efficiency and performance, as well as weaknesses in opponents. This actionable data has a number of benefits, including developing better in-game strategy.

Additionally, embedded devices such as smart shoe insoles and embedded sensors produce an abundance of data that helps sports doctors and physical therapists to maximize performance while mitigating injury risk and developing better healing strategies.  Off the field, these devices deliver data via players wearing clothing with integrated sensors as they practice and train.

quotes icon

Sensors monitor vital statistics such as heart and breathing rates throughout a workout, leading to more efficient exercise.

Coaches and medical staff can use data to gain insights into when to stop practice, rest players, and address things like muscle imbalances. Coaches and managers can also track a player’s historical data, leading to informed injury prevention and the identification of performance limitations.

Furthermore, smart devices in shoes, mouth guards, helmets, and other wearables mean the identification of exact body movements and performance scenarios where safety could be an issue. When an injury does occur – and this is sports, after all, where injury is part of the game – IoT can play a role in the rehab process through the use of personalized data that helps medical staff optimize recovery plans.

Enhanced fan experience

Sport venues are increasingly equipped with IoT devices and applications, turning them into smart stadiums that respond to fans needs and increase engagement.

A smart stadium can utilize real time data on digital signs or via mobile applications to alert fans to where they can find short lines to concession stands and rest rooms, along with available parking, seat upgrades and onsite offers. Fans can even order refreshments via apps and get alerts as to when their order is ready.

IoT deployments improve operational efficiencies in sports venues, such as optimized energy usage, due to monitoring temperatures and lighting throughout the venue and adjusting as needed. Predictive maintenance is also being employed, and even things like optimized restroom cleaning schedules are helping to enhance fan experience.

The use of connected cameras and drones – smart surveillance – are being used to keep an eye on fan behavior by monitoring every corner of the arena or stadium and tracking access to sensitive areas. Stadium staff are able to enact a swift response to any issues that may arise. Advanced solutions can utilize facial recognition to oversee fans’ behavior.

Let’s get ready to rumble!

If you would like to learn more about how IoT can enable your business, please get in touch.

Learn more about Tele2 IoT

Get in touch