Get in touch

IoT & Sustainable Urban Development

Creating smart, sustainable cities with IoT

Smart Cities: A Tele2 IoT White Paper

IoT is one of the driving technologies behind the smart city concept and is poised to be a key component in facilitating sustainable urban development. More than half of the world population lives in urban areas today and cities account for more than 70 percent of global carbon emissions and 60-80% of energy consumption. As urban populations have increased, services have overall deteriorated in terms of both quantity and quality, with rapid urbanization giving rise to increased challenges around things like traffic congestion, water contamination, and most importantly, social inequality.

Municipalities are leveraging IoT technology to connect devices, infrastructure, and people. It is being used to address challenges that range from waste management and water conservation to traffic, air pollution, and power grids. By leveraging IoT technologies, cities are able to successfully manage their growing populations by improving quality of life and the efficiency of urban operations and services, while also increasing competitiveness and addressing economic, social, environmental, and cultural needs.

The top priorities for some of the world’s leading smart cities include:

  • Connected public transport (74%)
  • Traffic monitoring and management (72%)
  • Water level / flood monitoring (72%)
  • Video surveillance and analytics (72%)
  • Connected streetlights (68%)
  • Weather monitoring (68%)
  • Air quality / Pollution monitoring (68%)
  • Smart metering – water (66%)
  • Fire / smoke detection (66%)
  • Water quality monitoring (64%)

Let’s take a closer look at some of the areas where cities are leveraging IoT technology to address challenges, and how things could play out as solutions evolve:

Retrofitting existing building stock

Every year, nearly 5 billion square meters of buildings are retrofitted. Retrofitting existing building stock is an effective approach when dealing with limited budgets, aging structures, and energy accountability, as it helps reduce energy costs, improves equipment performance, and extends the lifetime of the building.

If we look at energy, in the EU, buildings are responsible for 40% of total energy consumption and 36% of greenhouse gas emissions. Retrofitting ageing building stock presents a major opportunity to not just reduce carbon emissions, but to also reduce operating costs and provide more comfortable and healthier buildings for citizens. Retrofitting also has significant job generation potential.

Before IoT, tracking and collecting building performance data was a manual job. It a was tedious, inaccurate, and slow process. Now, with IoT sensors and the data generated, it is possible to monitor and track a building’s performance in near real-time, giving crucial insights on the go, which leads to better outcomes.

When IoT sensors and smart technology are introduced into the picture, you can monitor and control the use and operation of building equipment, such as HVAC systems, lighting, and plug loads, you also get real-time data, all of which leads to detection and diagnoses of faulty equipment, energy efficiency, and even enhanced profitability.

Beyond sustainable retrofits, buildings can also be repurposed for alternative uses. The demand for office space may not recover post-pandemic, which can be seen as an opportunity to convert commercial buildings into residential housing, cultural spaces, or other uses. These changes will require careful planning in order to achieve a good mix of urban functions and land use, and regulatory, zoning, and tax policies will have to be updated. Designing more flexible and modular smart buildings will make it easier to adapt to new uses, rather than consigning older buildings tear down status – and that will increase the use of circular economy principles in building design.

Transportation & traffic

Among the key goals of any public transport system are greater efficiency and reliability – and smart technology is the key to enablement. There are a number of areas where IoT is particularly helpful:

Toll & ticketing

More people in our cities means more vehicles on our roads – and an increase of vehicles means queues at toll booths. While automated tolls, using an RFID (Radio Frequency Identification) tag, have already improved the flow of traffic, further improvements are possible through the use of IoT technology. Many of today’s vehicles come equipped with IoT connectivity, which allows a car or truck to be detected up to a kilometer away from a tolling station. What this means in practice is that the car or truck can be identified long before it approaches a toll booth – so when the vehicle finally gets there the barrier automatically raised for the vehicle to pass through. For older vehicles, a registered smart phone could serve the same purpose, taking automatic payment from the phone’s digital wallet.

Connected vehicles

As mentioned, many vehicles today are already connected and are equipped with sensors and devices that monitor everything from brakes and the engine to tire pressure and exhaust. Going forward, connected vehicles will use in-vehicle networks, radar, and cameras to help detect and communicate with one another, prevent collisions, and promote smooth traffic flow. Vehicle tracking systems are already being used within the freight and rental segments, monitoring driver behavior and collecting data on things like idling time and fuel consumption.

Public transport management

IoT technologies are already widely used in public transport, including for integrated ticketing and automated fare collection, passenger information, and display systems. IoT can also be used for real-time vehicle tracking, which allows public transport agencies to communicate better with customers about things like arrival and departure times. Datal analysis and real-time management allows transit agencies to monitor progress in real-time and make adjustments for unpredicted incidents, such as accidents, roadworks, station closures, etc.

Smart lighting

The majority of city dwellers spend more time indoors than outdoors, which can have a significant impact on energy consumption. The use of electricity for lighting can be significantly optimized with the use of intelligent systems. Natural light cycles can be mimicked by incorporating light and temperature sensors, while light sensor-based applications can be used to manage the orientation of solar panels for optimal usage of natural resources.

If we look at street lighting, the savings and benefits are clear:

Dynamic dimming

Intelligent streetlights adjust light levels based on specific times and events. When paired with motion sensors, light levels can be further refined. Dynamic dimming based on time, event, or human presence can result in a more than 60% reduction in energy consumption, while the use of motion sensors means when no human presence is detected, streetlights illuminate at a low, predefined level, reducing energy usage, CO2 emissions, and light pollution.

Maintenance optimization

Intelligent streetlights mean near real-time information on each light, allowing almost instant notification of faults or errors, which allows city managers to take informed actions, while at the same time reducing the need for manual checks. This can reduce maintenance costs significantly.

Increased public safety

Smart motion sensors trigger streetlights only when humans are detected, for example when a pedestrian or cyclist passes by, encircling them in a ‘circle of light’.  This increases overall public safety, as statistically speaking criminals avoid committing crimes in well-lit areas.

Additionally, smart streetlights offer an ideal point from which a diverse range of smart city applications can be launched, collecting a wide array of data on everything from air quality to street security to traffic patterns. Streetlight poles have an uninterrupted power supply, making it easy to power IoT devices and sensors. They are also generally spread uniformly across cities and are consistent in height, making them idea for hosting all kinds of IoT sensors and systems, removing the need to set up ad hoc infrastructures.

These are just a few of the ways IoT is enabling smart, sustainable urbanization. To learn more, download the Tele2 IoT Smart City White Paper, which covers this topic in depth. You are also welcome to contact us for further information on how IoT can help your city address your challenges.