What is an eUICC SIM card?

Quick eUICC definition: 

eUICC (Embedded Universal Integrated Circuit Card) is a functional concept for remotely managing SIM profiles, bringing benefits to both IoT devices and your entire deployment. At its very core, eUICC is a software component running on a specific type of SIM hardware that allows you to store multiple operator profiles and switch between them remotely.

Main benefits of eUICC SIMs

Simplicity

You only need one SKU to manage global deployments

Flexibility

Ability to change operators throughout the lifecycle of your device

Resilience

Protect against changes in roaming regulations

Future proofing

Access to both existing and future Tele2 IoT eUICC-based services

Let’s break it down some more: since the start of cellular IoT, when it was still referred to as M2M, IoT devices relying on cellular networks for connectivity have used traditional “UICC” SIM Cards (Universal Integrated Circuit Card). UICC SIMs are “static”, meaning that after manufacturing there is no way to replace the operator on the SIM. In the recent years however, technology advances have brought us the next generation of SIM Cards, namely the eUICC SIM (Embedded Universal Integrated Circuit Card).

With eUICC, it’s no longer ‘put the SIM card in the device, and what it is at deployment is what you get for the rest of the device’s lifetime’ – eUICC SIMs take things up a few notches: you can download profiles, change operator, or even have multiple operators on the same SIM, something that isn’t possible with traditional UICC SIMs. The capabilities of eUICC SIMs are revolutionary for the IoT market – and the most secure eUICC formfactor on the IoT market today is the embedded SIM.

A single SIM for multiple global deployments

Previously, when deploying IoT with traditional UICC SIMs, you needed to understand where your devices would end up in the world so you could install SIM cards with the carrier profile needed to operate in those regions. This could cause complications in your supply chain because managing different SIM with different operators would add significant complexity to your manufacturing and logistic process. With eUICC, once your devices are out in the field, remote provisioning allows you to set them up with the carrier profiles best suited to serve your connectivity needs. So, instead of having multiple different SIM cards in the same device in order to, for example, facilitate optimal roaming in different markets, eUICC means you need just one SIM that enables you to activate the optimal profile for the country you’re in even after deployment.

Additional profiles can be downloaded and managed remotely throughout the device’s life cycle and you can change your operator or service provider without having to physically change out your SIM cards, something that can be both costly and logistically challenging, particularly for enterprises who have large-scale, global IoT deployments, as well as those who have deployed hard-to-reach devices. Additionally, eUICC SIMs are available in all standard form factors, meaning that switching to eUICC-enabled SIM cards is possible without the need to completely change your device.

The difference between eSIM and eUICC

To put it in the simplest of terms, an eSIM is a single virtual SIM card that takes advantage of eUICC’s capabilities.  

While eUICC and eSIM share common goals, their specific functions, features, and applications in IoT differ. eSIM is a virtual SIM card embedded in devices, while eUICC is the technology that enables eSIM’s remote management capabilities. In other words, eUICC is the foundation that makes eSIM technology possible. Additionally, eUICC is designed to store multiple SIM profiles, allowing for seamless switching between different MNOs, whereas eSIM is a single virtual SIM card that takes advantage of eUICC’s capabilities.

Evaluate our solutions with a free Trial Kit

check-box

5 SIMs

check-box

5 Mb per SIM

check-box

Access to IoT platform

The layers of an eUICC SIM – how are they linked together?

If we look at the different layers of an eUICC SIM, we need to understand how those layers need to match in order for the SIM to work. The hardware Operating System (OS) and electrical profile work like a minicomputer, with the different layers needing to be compatible for the SIM to function correctly. Not just any OS with work with any hardware, though, and it’s the hardware and OS compatability that decides if a SIM can support eUICC functionality.

eUICC functionality allows the SIM to remotely download, switch, and enable a different profile. This means there is no need to physically change the SIM – you can switch between different profiles in the same MNO, or from one MNO profile to a different MNO profile.

The Tele2 (MNO) profile and eUICC profile are personalizations of the SIM. They contain network keys and subscription identifiers (IMSI, ICCID, authentications keys.) The Tele2 profile can either be personalized when the SIM is produced in the factory, or it can be downloaded later through SM-DP (Data Preparation)/SM-SR (Secure Routing).

The Operating System

In addition to matching with the hardware, the OS supports important features on the SIM. If there is a PIN active on the SIM, the PIN handling is in the OS, as are authentication, access, and management of files and data, along with loading and deleting applications. Encryption/decryption and tamper proof functions are also handled in the OS.

One eUICC profile, many MNO profiles

An eUICC SIM has one eUICC profile but can store multiple MNO profiles, although only one MNO profile will be enabled at a time. So, what are these profiles?

What about applets?

Profiles can also contain applets, which are small programs on the SIM dedicated to fulfilling a particular task. The task could be implementing the business logic to change a connectivity profile based on rules, such as when one network is not available and you want the next best available one. If the SIM has a local applet, this is stored in the Tele2/MNO profile. If it’s a global profile it will be in the eUICC profile. To provide interoperability applets are typically developed in JAVA. Today, Tele2 IoT has an applet that clears forbidden networks, and in 2024 local management and management of 5G stand-alone on eUICC will be launched.

Unique eUICC SIM identifiers

Every eUICC SIM has an EID (eUICC identifier) which is the administrational key in the hardware layer. If there is an MNO profile change the SIM will have a different ICCID and IMSI, but once the eUICC SIM is produced its EID is never changed.

The EID contains 32 digits compared to the ICCID’s 20. There is a shortened version of the EID printed on both the embedded and plug in eUICC chip. The EID is provisioned in the SM-SR, which is also responsible for managing the status of profiles on the eUICC.

Hardware & formfactors

When using a SIM that has eUICC capabilities it is important that the hardware is robust and long lasting. ETSI has a classification of the different environmental properties in which the SIM is graded.

On a SIM technical sheet, the environmental performance can be represented in a string, together with which version of ETSI specification was used. The string of letters can then be referred to in order to understand what the SIM can withstand.

For example, the environmental property temperature has the grades TS, TA, TB, and TC. The Premium industrial SIM is graded as TB in its ETSI, string while a commercial SIM is graded TS. The eUICC Premium Industrial SIM can be stored and operational in the temperature range of -40 °C to + 105 °C ,while the UICC commercial SIM can only be used in the temperature range of -25 °C to + 85 °C

As mentioned before there are two types of SIM cards: plug-in formfactors (2FF, 3FF, 4FF) that are removable, and embedded formfactors that are soldered into the device. The most popular embedded SIM on the IoT market is the MFF2 (M2M Form Factor).

As the abbreviation applies the MFF2 SIM is designed for M2M/IoT use cases and is delivered on what looks like an old film reel. It is one of the most secure chips due to being soldered into the device and the device can be designed in a way that makes it more robust in general. An embedded SIM is also a greener, more sustainable alternative to plug-in SIMs, with less plastic and metal per SIM.

The future of eUICC

With eSIM technology the connectivity service profile of the secure identity is separated from the physical chip it is stored on (GSMA M2M eUICC Architecture). As we all know, the physical chip comes in the following current form factors plugin (2FF-4FF) and embedded. When embedded was introduced it got the name eSIM. When the standard for a remotely provisioned Secure Identity was introduced it was also given the eSIM namewith the reasoning that in the future all remotely provisioned Secure Identities will be embedded. But as we are not at that point, this is causing a lot of wasted time spent on miscommunication.  

The fact that the function (that a profile can be remotely provisioned) and the formfactor (embedded) have the same name by GSMA makes it challenging for everyone launching the solution as it is quite complex to describe to customers.  

We at Tele2 IoT try to distinguish between this by using the following terminology: 

• A SIM is aUICC with a Tele2 subscription profile that cannot be changed over time. eUICCs and UICCs come in plug in and embedded form factors

• eUICC is a chip that can have one or many subscription identities (virtual profiles) downloaded and managed remotely

• Our eSIM is an eUICC with our subscription (profile) enabled on delivery, which can be changed, offering freedom and flexibility for our customers.

eCall is a European Union (EU) emergency call system for vehicles that aims to bring rapid assistance to motorists involved in a collision anywhere in the EU. eCall is designed to enhance protection and safety while reducing fatalities caused by road accidents, as well as related injuries, and property loss. The EU implemented the mandated deployment of eCall for new cars and light trucks 31 March 2018.

Why eCall?

All around the world, roads are shared by vehicles of all kinds, yet traffic accidents remain a leading cause of death. Each year, 1.35 million people are killed on roadways globally, with crash injuries estimated to be the 8th leading cause of death globally for all age groups. And the annual cost to society in monetary terms is in the billions.

While governments around the world have launched any number of road safety initiatives to reduce accidents, they’ve mostly focused on enhancing and improving road infrastructure. To provide a critical service that can save lives, the EU has taken a new approach with its pioneering eCall, which is an example of the connected car concept, leveraging IoT technology, real-time data transmission, and enhanced safety features.

How eCall works

In the event of an accident, eCall technology makes an immediate emergency notification via activation of in-vehicle sensors, or manually by vehicle occupants. When activated, eCall provides relevant location information to European Public Safety Answering Points (PSAPs) by means of mobile wireless communication networks. As all European PSAPs are equipped to receive eCall, it is expected that many existing vehicles will be retrofitted with after-market eCall devices.

  1. Emergency notification: eCall is automatically activated when a vehicle’s sensors detect a severe crash, autonomously dialing 112, the European emergency number.
  2. Location: Connectivity enables positioning, establishing a telephone link with the relevant call canter, with details of the accident, including position, sent.
  3. PSAO operators dispatch appropriate assistance.
  4. Faster help: eCall can increase response time by 40% in urban areas, and 50% in rural areas, reducing the number of fatalities by a minimum of 4%, and the number of severe injuries by 6%.

Connectivity & IoT technology

While eCall devices normally have a separate SIM and rely on voice, there is no support for VoLTE, which may make them vulnerable to the sunsetting of 2G/3G networks. This is due current eCall deployments based on standards from 15-years ago. Work on next generation eCall is currently underway, and an upgrade mandate is expected to be launched as many European telecom operators sunset their GSM networks.

OEMs are recommended to equip their vehicles with a multi-network generation TCU (Telematics Control Unit), while PSAPs should include next generation eCall over LTE in their plans for receiving emergency calls via IPT networks.

Next generation eCall is an evolution of the existing eCall service, based on IMS (IP Multimedia Core Network Subsystem) using 4G/5G technology. While there is not yet an EU-level decision on implementation of next generation eCall, the European Commission (EC) is preparing regulatory amendments for the transition of emergency communications, including eCall, to packet-switched IMS-based networks. In accordance with Commission Delegated Regulation (EU) 2023/444, member states are required to prepare a roadmap for the upgrade. Under current proposals from the EC, PSAPs are required to support next generation eCall from 1 January 2026.

Note that eCall does not allow vehicle tracking outside of emergencies, meaning that end-user data and privacy is protected. The eCall device is dormant and is only activated when vehicle sensors react to a severe crash. Directive 95/46/EC states that vehicles with 112-based eCall systems must be protected against continuous tracking and tracing during normal operations/day-to-day travel. In order to meet regulations, digital security technology is embedded into eCall equipment to prevent misuse and protect privacy.

The European Union expects 100% penetration of eCall to be achieved by 2035, with the number of road deaths and serious injuries reduced by 50% between 2020 and 2030.

If you would like to learn more about how IoT can enable your business, please get in touch. 

Asset management is one of the original IoT use cases and has proven to bring real value across myriad industries. IoT asset management refers to the tracking and management of individual connected assets via devices and sensors to capture and report information. IoT devices connect assets to a central platform, allowing you to utilize real-time data streams to monitor, track, and manage the lifecycle your assets.

This has been a game-changer for many companies, who previously relied on error-prone and laborious manual procedures. In fact, according to a study from Webisoft, companies utilizing IoT for asset tracking have enjoyed an impressive increase in efficiency, with a 20% decrease in maintenance costs and a 15% increase in overall equipment effectiveness. In other words, IoT has transformed asset management, revolutionizing traditional practices and driving productivity and success.

quotes icon

With IoT you can track and maintain anything from equipment on the factory floor, raw materials, or finished goods to mobile assets, such as vehicles, throughout their lifecycle.

Connecting your assets with IoT devices and sensors allows you to gather both real-time and historical data on the status, condition, and performance of each asset, as well as automating your processes, reducing operational costs, increasing productivity, enhancing safety and security, and extending the longevity of your assets.

Resource optimization

IoT technology plays a pivotal role in maximizing asset efficiency and minimizing waste. It does this through continuous monitoring and analysis of data, which provides deep insights into asset usage and performance. This gives you a clear understanding of how, when, and where your assets are being used, thus allowing you to have a more informed and strategic allocation of your resources.

In real terms, this means identifying where resources are over or-underutilized, leading to adjustments that can lead to a reduction in operational costs. This kind of fine-tuning of resource distribution ensures that each asset is used to its optimal capacity, avoiding unnecessary costs related to things like energy and maintenance.

quotes icon

Beyond cost reduction, utilizing IoT can enhance overall productivity by allocating assets in a way that maximizes output and efficiency.

In other words, making the right assets available and functioning at the right time means you can maintain high performance standards.

Real-time data

Real-time data transforms asset management. IoT sensors allow you to receive constant updates on the condition, location, and usage patterns of your assets. This information drives data-driven and informed decisions about everything from maintenance schedules and asset deployment to resource allocation. It also allows predictive maintenance, preventing issues before they escalate and therefore saving you money, time, and manpower.

If we look at Industrial IoT, integrating IoT technology allows manufacturers to analyze and monitor three crucial aspects of their equipment: availability, quality, and performance. This real-time information minimizes losses and downtime.

Predictive maintenance

This is a key application of IoT in asset management. Analyzing data from IoT sensors allows you to use predictive algorithms to estimate when an asset is likely to require maintenance or replacement. When compared to traditional reactive maintenance, your business will become far more efficient and cost-effective, and costly downtimes will be greatly reduced.

This is a significant shift is how a business approaches asset care, with IoT devices generating critical data on everything from temperature and vibration to overall wear and tear, which ultimately gives you a comprehensive view of each asset’s status. In real terms, this means you can detect patterns and irregularities that could indicate potential equipment breakdown or failure. Anticipation potential issues before they escalate into failures allows you to plan and target maintenance intervention, rather than working from a reactive maintenance schedule.

Scalability

IoT technology allows you to adapt seamlessly handle a growing number of assets and the accompanying surge in data without losing performance of efficiency. IoT technology allows you to swiftly adjust your asset management strategy and make considered decisions by utilizing both real-time and historical data. This could involve maintenance scheduling, resource allocation, or performance optimization. The ability to react quickly to market or other business changes means you have the competitive edge over those still mired down in old practices.

Security

IoT technology allows you to track your assets in real time, making it easier to locate and recover stolen or lost assets. Furthermore, IoT devices can provide alerts in the event of unauthorized access or tampering, allow you to take swift action.

Conclusion

Marrying IoT with asset tracking means many industries are being transformed, with new standards for operational efficiency being set. There are myriad benefits to be enjoyed by implementing IoT in asset management, ranging from automation and cost control to enhanced monitoring and improved accuracy.

As IoT technologies evolve, so too will the impact they have on your business, with new opportunities being unlocked. Business is an ever-evolving landscape – and IoT is not just a technology advancement, it’s an inescapable strategic imperative for any business who wants to keep one step ahead of the competition.

If you would like to learn more about how IoT enables asset management, please get in touch. 

To the naked eye, there isn’t much difference between consumer and IoT/M2M SIMs. The SIM in your mobile phone looks pretty much like the SIM in an IoT device, but there are critical differences. Your phone SIM is a commercial UICC plug-in, while an IoT device that is enabled to remotely manage subscriptions and has space for a removeable SIM is using an eUICC plug-in SIM. So, while they may look the same, the capabilities of eUICC SIMs are revolutionary for the IoT market- and the most secure eUICC formfactor on the IoT market today is the embedded SIM.

Let’s look at the different layers of an eUICC SIM and how those layers need to match in order for the SIM to work.

How are the layers linked together?

The hardware Operating System (OS) and electrical profile work like a minicomputer, with the different layers needing to be compatible for the SIM to function correctly. Not just any OS with work with any hardware, though, and it’s the hardware and OS compatability that decides if a SIM can support eUICC functionality.

quotes icon

eUICC functionality allows the SIM to remotely download, switch, and enable a different profile.

This means there is no need to physically change the SIM – you can switch between different profiles in the same MNO, or from one MNO profile to a different MNO profile.

The Operating System

In addition to matching with the hardware, the OS supports important features on the SIM. If there is a PIN active on the SIM, the PIN handling is in the OS, as are authentication, access, and management of files and data, along with loading and deleting applications. Encryption/decryption and tamper proof functions are also handled in the OS.

One eUICC profile, many MNO profiles

An eUICC SIM has one eUICC profile but can store multiple MNO profiles, although only one MNO profile will be enabled at a time. So, what are these profiles?

The Tele2 (MNO) profile and eUICC profile are personalizations of the SIM. They contain network keys and subscription identifiers (IMSI, ICCID, authentications keys.) The Tele2 profile can either be personalized when the SIM is produced in the factory, or it can be downloaded later through SM-DP (Data Preparation)/SM-SR (Secure Routing).

quotes icon

Profiles can also contain applets, which are small programs on the SIM dedicated to fulfilling a particular task.

The task could be implementing the business logic to change a connectivity profile based on rules, such as when one network is not available and you want the next best available one.

If the SIM has a local applet, this is stored in the Tele2/MNO profile. If it’s a global profile it will be in the eUICC profile. To provide interoperability applets are typically developed in JAVA.

Today Tele2 IoT has an applet that clears forbidden networks, and in 2024 local management and management of 5G stand-alone on eUICC will be launched.

What is unique in an eUICC SIM?

Every eUICC SIM has an EID (eUICC identifier) which is the administrational key in the hardware layer. If there is an MNO profile change the SIM will have a different ICCID and IMSI, but once the eUICC SIM is produced its EID is never changed.

The EID contains 32 digits compared to the ICCID’s 20. There is a shortened version of the EID printed on both the embedded and plug in eUICC chip. The EID is provisioned in the SM-SR, which is also responsible for managing the status of profiles on the eUICC.

Hardware and formfactors

When using a SIM that has eUICC capabilities it is important that the hardware is robust and long lasting. ETSI has a classification of the different environmental properties in which the SIM is graded.

On a SIM technical sheet, the environmental performance can be represented in a string, together with which version of ETSI specification was used. The string of letters can then be looked up to understand what the SIM can withstand.

For example, the environmental property temperature has the grades TS, TA, TB, and TC. The Premium industrial SIM is graded as TB in its ETSI, string while a commercial SIM is graded TS. The eUICC Premium Industrial SIM can be stored and operational in the temperature range of -40 °C to + 105 °C ,while the UICC commercial SIM can only be used in the temperature range of -25 °C to + 85 °C

As mentioned before there are two types of SIM cards: plug-in formfactors (2FF, 3FF, 4FF) that are removable, and embedded formfactors that are soldered into the device. The most popular embedded SIM on the IoT market is the MFF2 (M2M Form Factor).

As the abbreviation applies the MFF2 SIM is designed for M2M/IoT use cases and is delivered on what looks like an old film reel. It is one of the most secure chips due to being soldered into the device and the device can be designed in a way that makes it more robust in general. An embedded SIM is also a greener alternative to plug-in SIMs, with less plastic and metal per SIM.

If you would like to know more about our SIMs and eUICC functionality, please feel free to reach out to the Tele2 IoT team.

Cities across the globe have already implemented any number of smart city solutions, leveraging IoT technology to connect everything from public transport to healthcare to waste management. But unlocking the full potential of a smart city remains a challenge. To be truly successful and to fully reap the benefits of IoT, smart cities cannot simply adopt digital technologies in silos – they need to leverage and combine the strengths and diverse capabilities of their different departments across the entire smart city ecosystem.

To avoid the myriad challenges silos bring, it’s important that cities create transparency between various city services. Too many teams still operate in solos as they manage various needs such as traffic, utilities, power, water, and parking. Each of these departments generate massive amounts of data – and IoT technology can enable each area to increase productivity, improve processes, and leverage that data to allow for better decision making and cross-departmental collaboration.

quotes icon

Chaotic, siloed planning and development, outdated policies, strategies, and infrastructure – all of these contribute to wasted time, money, resources and energy.

The good news is that many cities are working to remove barriers to a truly connected smart city. The result is a collaborative approach that leverages IoT to mitigate risk and optimize assets, resulting in improved systems and enhanced quality of life.

Here’s what breaking down the silos could mean in practice: imagine a driver on his or her daily commute. They are stuck in traffic and wondering why. Suddenly, they are alerted by the city of an accident 20 km down the road. They are also given information on alternative routes, which allows them to quickly adjust their plans and make it to work on time.

Now let’s add some more to that picture. By leveraging IoT and related technology, the driver isn’t the only person alerted to that accident. First responders and people working with public safety and public works are also notified, oassengers using public transport are alerted and nearby police officers are quickly re-routed and re-assigned.

Suddenly, through IoT, you have all interested parties mobilized and aware and a potentially difficult situation is brought under control much more quickly. Additionally, data from the incident can be utilized to understand if the place of the accident is one where accidents happen regularly. Data can also be used to measure response times and how systems are working.

Another scenario could involve a big event in your city, such as a sporting event or a concert. By connecting your various systems and departments and sharing information, traffic lights and public transport can be coordinated with event timings to help manage and disperse crowds in a safe and efficient manner. Connected parking spaces can help people easily identify where to park through an app, while an integrated cashless payment system can ease processes.

So, how do you develop a truly cohesive smart city that is responsive and integrated? While the best advice is to integrate your solutions right from the start, that might not be possible, given that many cities already have smart city solutions up and running.  No matter what stage your smart city is at, collaboration between the various players across the smart city is pivotal in developing the right suite of smart solutions to meet the unique needs of your city.

quotes icon

Interoperability is a key factor in successfully removing Smart City silos.

Linking legacy systems, including IT systems, with IoT sensors and data architectures is crucial. It’s also important to not see implementing IoT purely in terms of just technology. Implementing IoT is also an operational transformation that will impact a wide range of stakeholders, even if they are not directly involved. And don’t forget about data: know how you’re going extract, analyze, and store data. You may not be using all of the data right away for things like AI, but you may want to in the future, so have a plan.

Ask yourself the following questions:

  • What does ‘smart’ look like/mean for your regions?
  • Which smart solutions will solve which challenges – and how can they work in harmony?
  • Which technologies, policies, and strategies will be needed?
  • How will you finance your projects?
  • How will you address security?
  • How will intelligent systems work together across departments and even with other regions?
  • How will you measure outcomes for different stakeholders?

At the end of the day, employees will come and go, so developing an interconnected, interoperable smart system that is built to last will benefit both the city and any future employees in the long run. Historical data will be crucial to future city planning, as well as key to continued optimization and improved efficiency across the smart city ecosystem.

If you would like to learn more about how Tele2 IoT can help you integrate your Smart City solution, please get in touch.

In today’s business world, IoT (Internet of Things) has moved from ‘nice to have’ to ‘must have’ due to the tremendous amount of data being captured from multiple sources, leading to a host of benefits, including improved processes, cost savings, streamlined operations, and increased customer satisfaction.

According to the International Data Corporation, the total data generated by 2025 is expected to be around 175 ZB, with roughly 80 ZB attributable just to IoT devices. This presents two challenges: 1) Not all data is created equal, meaning a fair amount of data collected isn’t useful, and 2) processing that data efficiently isn’t easy.

This is where AI (Artificial Intelligence) comes into the picture. AI, machine learning, generative AI – they all fall under the same umbrella of artificial intelligence. And by combining AI’s data analysis capabilities with IoT’s extensive data collection, organizations can make data-driven decisions, optimize operations, and improve efficiency across their business much more quickly and efficiently.

quotes icon

IoT deals with devices interacting using the internet. AI allows those devices to learn from their data and ‘experience’.

To put it simply: IoT collects and transmits the data, while AI has the power to unlock that data much faster than a human can. The combination of these two disruptive technologies creates and enables extremely powerful end results that have the potential to revolutionize industries, businesses, and economies:

Operational efficiency

AI takes the constant stream that IoT devices extracts and detects patterns and anomalies that devices are not capable of doing. Machine learning coupled with AI can predict operation conditions and detect parameters to be modified to ensure ideal outcomes. AI-enabled IoT offers insights into which processes are redundant and time-consuming, and which tasks can be fine-tuned to enhance efficiency. AI processes large volumes of data received by connected devices and identifies similarities in patterns faster and more accurately than humans. This means you can maximize time, resources, and effort.

Data preparation

While IoT devices collect and transfer data with no eye towards what is relevant and what is not, AI can sift through and select useful data, presenting relevant and insightful information, while leaving aside what isn’t useful. AI can also assist in optimizing data labeling – adding tags, labels, or names to raw data, which allows a machine learning program to better understand and utilize information.

Faster analytics

Bringing AI and IoT together means data has less distance to travel before it’s usable. This is because many large data centers are often situated in a different region than your business, which means your information has to cover a lot of ground between origin, processing, and application, which in turn gives you latency issues.

quotes icon

When IoT becomes enabled by AI, smart devices are suddenly able to analyze data on their own, which means faster speed and lower latencies – and improved performance.

Better risk management

AI-enabled IoT helps businesses to both understand and predict a broad range of risks and automate a prompt response. The classic example of this involves employee safety. Equipping workers wearable smart devices connected to a database allows those devices to collect data on things like location, temperature, worker vital signs, etc. That data is then transmitted to a central point for processing and analysis. If a worker’s vital signs are reaching a dangerous level, AI-enabled virtual assistants can send an alert to the worker or management and avoid a potentially dangerous outcome.

Improved customer satisfaction

Prioritizing customers’ needs and keeping customers happy is at the heart of every business. Unfortunately, any number of factors can contribute to customer dissatisfaction. Today, though, more and more businesses are recognizing the value of AI by implementing chatbots to not just interact with customers and address their needs, but to also utilize enormous amounts of data offer a far more personalized experience based. There are two kinds of chatbots: the first is based on AI and thus is more complicated, with the ability to evolve, while the second is based on a fixed set of rules that mean limitations and the inability to grow on their own.

Conclusion

The scalability and adaptability of AI and IoT complement one another. Combining the two technologies offers immense potential for driving innovation and transformation in a variety of industries. The number of connected devices will continue to grow and with it the amount of data.

IoT provides the infrastructure and connectivity to collect and transmit data, while AI algorithms are ideal for handling the increased complexity and volume of data, extracting meaningful insights and making sense of it at scale. By leveraging the unique capabilities of AI and IoT and letting them work in harmony, organizations can unlock new levels of automation, efficiency, and decision-making. And as both AI and IoT evolve, both individually and in conjunction with one another, the impact will help shape future intelligent systems.

If you would like to learn more about the possibilities IoT and related technologies can bring to your business, please get in touch. 

IoT has opened up a world of possibilities when it comes to healthcare. Ordinary medical devices can now collect extremely valuable and additional data, which in turn gives more insight into symptoms and trends and enables remote care. The result is more autonomy for patients and better monitoring of often serious conditions. Here are just a few of the ways IoT is creating smarter healthcare.

Remote Medical Assistance

One of the biggest and fastest growing areas of healthcare and IoT is remote medical assistance, in which connected devices monitor a patient’s conditions at their homes. Smart devices take readings and observe behavioral patterns (often automatically) and can alert medical professionals when there is a discrepancy. This is particularly applicable for elderly patients, as well as vulnerable patients or patients with long term chronic conditions. It reduces in-person visits and lets patients manage their care from home.

Smart Glucose Monitoring

Around one in ten adults are affected by diabetes, requiring continuous monitoring and treatment.  A Continuous Glucose Monitor helps diabetics monitor their blood glucose levels by taking readings at regular intervals. The data is then sent to a smart phone app and allow for remote monitoring – perfect for parents of diabetic children or relatives or elderly or vulnerable patients. Smart insulin pens automatically record the time, amount, and type of insulin dosage, and store long-term data on a smartphone app.

Connected Inhalers

Asthma kills around 1000 people each day and affects around 339 million people globally – a number that is rising steadily. Smart inhalers offer increased insight into and control over symptoms and treatment, helping those who suffer understand what might be causing their symptoms, tracking use of medication, and also allergen forecasts. One of the biggest benefits is that people using connected inhalers take their medication more consistently and are more likely to use their medication as prescribed, which leads to improvements in their condition.  There is also a wearable asthma monitor that detects symptoms of an asthma attack before its onset.

Connected Pills

According to the World Health Organization, around 50% of medicines are not taken as directed, which can lead to serious health consequences. Ingestible sensors are pills containing microscopic sensors – about the size of a grain of rice – that send a signal to an external sensor worn on the body, ensuring both proper dosage and usage. The data is then relayed to a smartphone app, which helps patients keep on top of their meds. This not only improves adherence to doctor directives, it also allows patients to have a more informed dialogue with their healthcare provider about treatment. Making sure patients take their medication at the right time is also an issue, particularly among elderly patients, who tend to be prescribed a cocktail of medications that are to be taken at certain times of the day.  Connected pill dispensing machines ensure that not only does the patient take the pill at the right time in the right dosage through the use of prompts, it also alerts healthcare providers if something is wrong.

Hand Hygiene Compliance

Proper hand hygiene is the single biggest defense against spreading disease, yet research shows that one out of every 20 patients in the US get infections from lack of proper hand hygiene in hospitals, with some losing their lives as a result.  Connected hand-hygiene stations monitor hand hygiene compliance in real time: any time a healthcare professional comes near a patient without washing their hands a sensor beeps, reminding them of their duty to treat their patients with clean hands.

Hospital Operations

Optimizing a hospital or healthcare center can take many forms; cutting unnecessary costs and streamlining daily functions are just two ways IoT has real value in a medical facility. Millions of dollars are lost annually due to lost or stolen equipment, which has a real knock on effect when it comes to patient treatment and resources. Attaching sensors to equipment allows hospital staff to track any piece of equipment in real time, which not only reduces theft but also allows tracking of the overall use of equipment. And by tracking usage, administrators can more easily understand when to replace or perform maintenance, thus avoiding equipment downtime.

Research

Much of today’s medical research lacks critical real-world information, instead using controlled environments and volunteers.  IoT opens up a sea of valuable data and information through analysis, real-time field data, and testing, delivering far superior, more practical, reliable data. This, in turn, yields better solutions and discovery of previously unknown issues.

Healthcare is one of the fastest growing IoT areas. If you’re interested in creating smarter healthcare, get in touch.

Today’s electric vehicle (EV) charging experience can be frustrating. The first hurdle is finding a working, available charging station. Next comes waiting in or by the vehicle for 30 minutes or so, which can feel like a waste of time. The annoying charging experience is one reason why as many as one in five drivers trade in their EVs for gas-powered vehicles.[1]

Charge point operators (CPOs) that deliver a better experience stand to gain a competitive edge in a market poised for spectacular growth. The 500,000 public EV chargers installed in 2021 brought the worldwide total to nearly 1.8 million.[2] They are not enough. To keep up with demand, Europe will need 9 million public chargers by 2035, a 400% increase over the 340,000 public chargers available in 2022.[3] Investors are listening: analysts estimate cumulative global investments in charging to exceed $360 billion by 2030 and $1 trillion by 2040.[4]

quotes icon

“EV charging infrastructure is a trillion dollar market opportunity over the next 20 years, but the pace of installations needs to accelerate rapidly.”

BloombergNEF, 2022

Growth and profitability hinge on smart cellular connectivity management

Imagine a great charging experience. It starts with working chargers. Dependable authentication, usage metering, and payment. A mobile app that shows charger location, real-time availability, and even dynamic pricing. SMS alerts on charging status (e.g., charging, 80% charged, 10 minutes remaining, charging complete) while the customer enjoys a coffee next door.

EV charging stations of the future will transform the 30-minute ho-hum charging experience into something drivers actually enjoy.[1] Equipped with cellular Wi-Fi routers, the charging station can provide a Wi-Fi hotspot for customers to work or watch the news from their car. Interactive displays to learn about local attractions—a source of advertising revenues for the station operator. A service to update the vehicle’s software while it charges.

Underpinning all of these customer experiences—today’s and tomorrow’s—is a reliable, secure network. Cellular networks are often more practical than wired networks for charging stations. They avoid the expense of wiring. They reach virtually everywhere, including highway service areas. Connecting a new charger to the cellular network can be as simple as inserting a SIM card. And many locations are served by multiple cellular networks, providing resilience if one network has an issue.

Challenges of cellular connectivity management

The ease of managing cellular network connectivity affects both the customer experience and profitability. Must-haves include:

• Service reliability. Out-of-service chargers or payment systems take a bite out of revenue. They also irritate customers who planned their trips around charging.

• Automated onboarding of new chargers. Individually provisioning large groups of chargers is time-consuming and error-prone, slowing down deployment.

• Automated rate-plan management. Assigning the right rate plans to hundreds, thousands, or tens of thousands of chargers—and then managing them—is an arduous task. Getting it wrong can lead to data overage charges that wreak havoc on projected profit margins.

• Insights into usage trends. Manually exporting cellular usage data to other enterprise applications is a tedious, time-consuming process and can postpone insights.

• Security. Unlike enterprise servers, EV chargers are out in the open, making it easier for bad actors to steal SIMs. Without a way to immediately detect and deactivate stolen SIMs, CPOs are on the hook for data charges until the theft is discovered, possibly weeks later.

• Single management platform across regions. For CPOs using multiple mobile network operators, integrating their management platforms is costly and cumbersome.

Scale faster, operate smarter, and secure better with Cisco IoT Control Center connectivity management platform. Unlike other platforms that simply connect your EV chargers to the cellular network, Cisco IoT Control Center helps you scale quickly and increase profitability by reducing costs and automating more of your business. Whether you’re just starting out  or already operate thousands (or tens of thousands) of chargers, Cisco IoT Control Center accelerates your IoT journey from deploying your first chargers to operating at scale.

Scale faster

Managing cellular IoT at large scale can be overwhelming. Cisco IoT Control Center makes it as simple to onboard and manage 10,000 chargers as 10.

Accelerate time to market. Quickly and accurately connect, provision, and deploy chargers in bulk. Reduce hours or days of work to just minutes with sophisticated rules-based automation using a simple, intuitive interface.

Simplify expansion. Expanding to other regions served by our global network of roaming partners? With Cisco IoT Control Center, you save the time and costs of integrating multiple CMPs and training your team to use them. Even if some of your charging stations are outside our service area, you likely won’t need to learn another CMP. More than 50 service providers around the world use Cisco IoT Control Center.

Drive innovation. Gain data-driven insights about expansion or targeted advertising with analytics on individual charging stations’ data usage. Cisco IoT Control Center is continually enhanced with emerging technologies like AI/ML-based analytics for threat detection and new 5G technologies for services like entertainment, advertising, and in-car services.

Operate smarter

Deliver better customer experiences and increase profitability with near-real-time visibility, control, and rate-plan optimization based on AI/ML-based analytics.

Increase service reliability. Receive real-time alerts if a charger hasn’t connected for a specified time period, starts sending unusual amounts of data, begins roaming, or otherwise behaves oddly. Quickly identify and resolve problems using sophisticated diagnostics and analysis tools, improving the customer experience and protecting revenue. Quickly rule out or resolve cellular connectivity issues before dispatching a technician.

Deliver great customer experiences. Keep tabs on thousands of charging stations from one interface to make sure they’re operating and sharing their location and status with your mobile app. Confirm that payment systems are working. With Cisco IoT Control Center you can also offer dynamic pricing based on time of day and other variables. Customers who have the flexibility to charge at different times of day or in less popular locations appreciate the cost savings.

quotes icon

We have so much more insight and control over our units now than we did before. Cisco IoT Control Center has paid for itself, tenfold.

Project Lead, Metering, Regional Utility Company

Avoid data overage charges. Use Cisco IoT Control Center to automatically optimize rate plans using AI/ML-based analytics. Be confident that you’re getting the best pricing based on current data usage. Automate workflows to save time and lower costs. Reduce operational costs with sophisticated process automation. We provide more than 100 APIs you can use to integrate cellular-connectivity data with your other business applications, avoiding the time and resources needed to manually import data. For example, integrate with your support ticketing system to automatically create a ticket whenever a charger goes offline. Integrate with your analytics application to understand usage trends. Seeing when and where usage peaks or dips can help you plan expansion, optimize operations, and measure the effectiveness of ad campaigns.

Secure better

Built by Cisco, a global leader in security, IoT Control Center gives you multilayer, enterprise-grade security and helps you respond quickly to suspicious device behavior.

Prevent unauthorized access. Protect your customer data and backend systems with multifactor authentication and role-based access controls.

Prevent SIMs from being used in another device. With a few clicks you can set a rule to automatically deactivate a SIM inserted into a new device and notify the appropriate people in your organization.

Speed response. Quickly identify potentially compromised chargers with real-time device monitoring and advanced analytics. Cisco IoT Control Center automatically initiates the right actions when devices exhibit unusual data and connectivity behavior.

Whether you’re a CPO, auto company, energy company, department of transportation,or another government entity, Cisco IoT Control Center can help you scale faster, operate smarter, and protect better.

Learn more about Cisco IoT Control Center (2CONTROL) here.

1 Electric Car Owners Switching to Gas Because Charging Hassle, Business Insider, July 28, 2021
2 Electric Vehicle Outlook 2022, BloombergNEF
3 Power Sector Accelerating e-Mobility, EY and eurelectric, 2022
4 Electric Vehicle Outlook 2022, BloombergNEF

Ever since electric vehicles (EVs) started to become a viable transport alternative, the phrase ‘range anxiety’ has been tossed about, with most pundits citing the fear of not being able to reach your destination without running out of power as a barrier to EV adoption. Even today, range anxiety is still mentioned as one of the top reasons why people are reticent about transitioning to electric vehicles. The funny thing is, though, that almost as soon as this phrase became part of the conversation, it became a myth. And some would argue that range anxiety was never a thing in the first place. So, let’s look at expectations and why ‘range anxiety’ doesn’t match with reality.

In 2011, when the first major EV was released to the market (the Nissan LEAF for those interested) you would get maybe 160km out of a full battery charge. And for some, that would be enough to make you nervous about running out of power, especially when the network of charging stations back then was minimal.

By 2015, though, the average EV had a range of around 200km, while today it hovers around 350km – a number that is expected to rise to around 400km in the not-too-distant future. And the charging station network? It has grown by leap and bounds. In the UK, there were 37,261 EV charge points spread across 22,049 charging locations by the end of December 2022 – a 31% increase from the previous year. In the EU,there were roughly 375,000 charging stations by the end of 2021, with that number expected to increase rapidly in the coming years.

Expectations vs reality

Those who cite range anxiety might have visions of being stranded on some roadside with no charging station in sight – and no ability to ‘fill up a gas canister’ for an emergency top up. But how far do people drive and where are they going?

If we look at the numbers, a study conducted on more than 600 000 vehicles across Europe showed that 8 in ten drivers travel less than 100km a day. That same study finds that 6 in ten drivers travel less than 50km a day. To break it down even further, in the UK, the average trip length is 8.4km, while globally, the average daily car journey is around 15 minutes or about 15km. In Europe, internal combustion engine (ICE) drivers average just 13,600km per year, while EV drivers are clocking up averages of 14,200km annually. In the US, 95% of car journeys are under 48km, with 60% less than 9km.

So, what does this tell us? That most of our time behind the wheel is spent on short, stop-start journeys – but even if those trips are longer, range anxiety really isn’t a realistic factor.

Here are a few individual EV model ranges to give you an idea of scope. Range, of course, varies due to things like weather and payload, along with factors such as city, highway, or rural driving. This means Real Range is an industry calculated average – and it’s important to note that the median range for EVs has increased by 56% in the last 6 years or so.

As you can see, the range numbers vary a great deal and this has to do with battery size, but even on the lower end you aren’t likely to run out of juice mid-trip. Most people charge their EVs at home, usually overnight, and while this has previously presented a challenge to those living in apartments, this too is changing as public charging stations rapidly grow in numbers, along with landlords installing charging stations in parking areas.  And while the number of EV charging stations does not yet match the number of gas stations, the rapid EV adoption we are currently experiencing means that will change very quickly.

Here in the Nordics, three in four new cars sold are EVs, and there are about five EVs on the road for every public charging point – people don’t all charge at once and many of us will be charging at home, so the fear of not being able to top up or having to wait in a ‘first come/first serve’ model is no longer really an issue. There are also myriad new solutions coming to market, including in-transit charging points and mobile charging stations.

And then there is the very basic fact that nearly all car manufacturers are investing in EVs and committing being part of the EV ecosystem expansion. VW alone has committed to installing nearly 3 000 new charging stations in the US, while a European high-power charging networs has committed €700 million in investment to enable rapid EV charging network expansion and accelerated growth across Europe. And there are new governmental schemes and investment being announced all the time, both on the local and national levels. In fact, the European Union has decided that the sale of new internal combustion engines will be banned by 2035, and all new cars will be battery-electric, meaning the automotive industry will play a big role in the battle for carbon neutrality by 2050.

To learn more about EVs and the ecosystem around them, download our EV Ecosystem White Paper.

quotes icon

We need to be online 24/7 in order to operate efficiently and effectively. That’s why having reliable connectivity is so important.
Tele2 IoT was competitively priced and flexible – basically it was a very smooth process for us

Kristian Sandahl CEO & Founder ChargeNode

Before we get to how IoT enables the EV ecosystem, let’s take a quick look at the background: all across the world, the electrification of road vehicles is growing quickly. In fact, for the first time ever, more than half of car buyers say their next purchase will be an electric or hybrid model. This shift is driven by a number of things, including environmental concerns and low maintenance and operation costs, along with government subsidies and regulatory support. What this means is that there will be an estimated 140 million electric vehicles (EVs) in use by 2030. The European Union (EU) alone has more than 330 thousand publicly accessible charging point and that number is growing, but deployment is uneven.

So, how are we going to charge all those cars? EV owners want and need the same autonomy, range, and ease of refueling as they have gotten with traditional fuel-injected cars, which means we must do more than just install more charging points. What we need to do is develop a robust EV charging infrastructure.

quotes icon

By connecting the entire EV ecosystem, finding charging stations will become easy, payment systems will be simplified, and a variety of value-added services will become available.

Connectivity is a crucial component to the evolving EV ecosystem and IoT offers huge benefits to all stakeholders across the value chain, including EV drivers, Charge Point Operators (CPOs), and network operators.  In order to connect, maintain, and manage the different parts of the EV ecosystem (charge points, payment systems, locators, maintenance, etc.) there is a strong need for resilient and secure two-way connectivity and not just in locations where wired infrastructure isn’t always readily or easily available.

But there are challenges in developing the EV ecosystem, including infrastructure management, addressing customer experience, profitability, maintenance, monitoring, energy management, and ultimately, how to create a universal ecosystem that works for everyone. IoT will play a crucial role in bringing it all together.

Managing charging stations

Charging stations are geographically dispersed, making it challenging and expensive to manage ‘onsite’. IoT enables CPOs to remotely monitor and manage operations and quickly resolve issues by presenting real-time insights into usage and device performance, including charger availability, fault monitoring, and troubleshooting – all of which help enormously when it comes to predictive maintenance and reducing downtime. Additionally, as charging station buildouts increase, data on existing deployments will help operators more accurately plan locations for new stations. Data can also be used to optimize charger utilization, identify areas for improvement, and track trends over time.

Charger availability

EV charging apps can search for nearby stations, check availability, and reserve a slot at the time required, based on battery capacity. Apps can also indicate charging rates or advise on off-peak hours for lower-cost charging.

Smart charging

Even at the best of times, energy rates vary throughout the year. Additionally, as EVs become increasingly prevalent, it’s crucial to be able to track charging stations in order to decrease grid load, because if a lot of people are charging their EV at the same time, this can put strain on the grid. By tracking and monitoring charging stations with IoT, you gain insights into how they are being used and how much power is being dawn, information which can be used to regulate the flow of power, so the grid isn’t overloaded. Overall, IoT allows us to manage the increasing demand for EVs while also keeping the grid stable.

Reducing downtime

Without reliable connectivity, sensors at charging points will not be able to communicate with the network, which means EV drivers will be left frustrated and the CPO’s credibility will be damaged. Basically, for IoT devices to function, there needs to be network availability and a stable, always-on connection. Cellular technology is the preferred choice, due to its presence in places where EV charging points would likely be installed, such as schools, parking lots, hospitals, office parking garages, etc. Downtime or poor connectivity can cost brands both revenue and reputation.

Security

IoT-enabled EV stations must do more than facilitate smooth energy exchange between EVs and the grid, or even information between customers and the charging point. Security must also be considered, because as the number of EVs grow and the EV ecosystem expands, the attack surface is also growing. Look at it this way: if a hacker is able to disable all EV chargers connected to the same network, it would be the equivalent to a gas shortage. Security is also crucial for the privacy of customers, such as their banking details. The advantage of cellular IoT connectivity is its built-in security measures that protect data and sensitive information, offering reliable and secure coverage, no matter the location.

Get in touch